06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7

Browse

Search Results

Now showing 1 - 10 of 49
  • Thumbnail Image
    ItemOpen Access
    Comparison of feedforward and model predictive control of wind turbines using LIDAR
    (2012) Schlipf, David; Pao, Lucy Y.; Cheng, Po Wen
    LIDAR systems are able to provide preview information of wind disturbances at various distances in front of wind turbines. This technology paves the way for new control concepts such as feedforward control and model predictive control. This paper compares a nonlinear model predictive controller and a feedforward controller to a baseline controller. Realistic wind "measurements" are obtained using a detailed simulation of a LIDAR system. A full lifetime comparison shows the advantages of using the wind predictions to reduce wind turbine fatigue loads on the tower and blades as well as to limit the blade pitch rates. The results illustrate that the feedforward controller can be combined with a tower feedback controller to yield similar load reductions as the model predictive controller.
  • Thumbnail Image
    ItemOpen Access
    Messungen im Bereich eines Windparks mit Fokus auf tief- und niederfrequente Schallemissionen und -immissionen
    (2022) Blumendeller, Esther; Gaßner, Laura; Müller, Florian; Wigger, Maayen; Berlinger, Philipp; Cheng, Po Wen
    Die Nutzung von Windenergie wird einen entscheidenden Anteil am erneuerbaren Energiemix der Zukunft haben. Während der Stromgewinnung geben Windenergieanlagen (WEA) Schall und Erschütterungen (seismische Wellen) in die Umgebung ab, vor allem im tieffrequenten Bereich. Im Zuge des interdisziplinären Verbundprojektes Inter-Wind werden akustische Messungen zur Unterstützung psychologischer Fragebögen, kombiniert mit seismischen und meteorologischen Messungen an Windparks auf der Schwäbischen Alb durchgeführt. Ziel des Projektes ist es, die Gründe für Belästigung der Anwohner in Zusammenhang mit den Immissionen der WEA zu verstehen. Hierbei liegt der Fokus auf dem tieffrequenten (20-200 Hz) und niederfrequenten (1-20 Hz) Bereich. Akustische und seismische Messungen wurden an einem Windpark auf der Schwäbischen Alb, mit drei WEA des Typs GE 2.75-120 durchgeführt. Parallel dazu konnten Anwohner Belästigungszeiträume über eine Geräuschmelde-App dokumentieren. In diesem Beitrag wird die Umsetzung einer interdisziplinären Messkampagne im Bereich des Tegelberg Windparks und eines Wohngebäudes in Tallage in ca. 1 km Entfernung zum Windpark beschrieben. Schließlich werden erste Ergebnisse der akustischen Messungen und interdisziplinären Untersuchung vorgestellt und diskutiert.
  • Thumbnail Image
    ItemOpen Access
    Optimization of floating offshore wind turbine platforms with a self-tuning controller
    (2017) Lemmer, Frank; Müller, Kolja; Yu, Wei; Schlipf, David; Cheng, Po Wen
    The dynamic response of floating offshore wind turbines is complex and requires numerous design iterations in order to converge at a cost-efficient hull shape with reduced responses to wind and waves. In this article, a framework is presented, which allows the optimization of design parameters with respect to user-defined criteria such as load reduction and material costs. The optimization uses a simplified nonlinear model of the floating wind turbine and a self-tuning model-based controller. The results are shown for a concrete three-column semi-submersible and a 10MW wind turbine, for which a reduction of the fluctuating wind and wave loads is possible through the optimization. However, this happens at increased material costs for the platform due to voluminous heave plates or increased column spacing.
  • Thumbnail Image
    ItemOpen Access
    Acoustic and seismic emissions from wind turbines
    (2017) Calarco, Francesca; Cheng, Po Wen; Zieger, Toni; Ritter, Joachim
    With regards to the interdisciplinary “TremAc” Project funded by the German Federal Ministry for Economic Affairs and Energy, this paper examines acoustic and seismic emissions generated by wind turbines with the aim of identifying a better understanding of their interaction. Measurement campaigns will be carried out in the field around a single wind turbine plant and results in terms of acoustic and seismic signals will be correlated and then evaluated in relation to environmental factors such as wind speed, wind direction and temperature as well as to data related to the wind turbines-specifications (e.g. rotation speed).
  • Thumbnail Image
    ItemOpen Access
    Nonlinear model predictive control of floating wind turbines
    (2013) Schlipf, David; Sandner, Frank; Raach, Steffen; Matha, Denis; Cheng, Po Wen
    In this work a nonlinear model predictive control method for a floating wind turbine is presented. A reduced nonlinear model including disturbance preview of wind and waves is derived and implemented to compute optimal input trajectories for collective pitch and the generator torque. A cost functional is introduced which fulfills all desired constraints and controller goals for above rated wind conditions. The controller is tested for extreme and fatigue load cases and a significant reduction of the power and rotor speed deviations is obtained. Furthermore, ultimate tower loads and damage equivalent loads on shaft and blades are decreased. Although more detailed testing is necessary, this preliminary results show the advantages of nonlinear model predictive control for floating wind turbines.
  • Thumbnail Image
    ItemOpen Access
    Nonlinear model predictive control of floating wind turbines with individual pitch control
    (2014) Raach, Steffen; Schlipf, David; Sandner, Frank; Matha, Denis; Cheng, Po Wen
    In this work a nonlinear model predictive controller with individual pitch control for a floating offshore wind turbine is presented. An aerodynamic model of the collective pitch control approach is extended by describing pitching and yawing moments based on rotor disk theory. This extension is implemented in a reduced nonlinear model of the floating wind turbine including disturbance preview of wind speed, linear vertical and horizontal wind shear, and wave height to compute optimal input trajectories for the individual pitch control inputs and the generator torque. An extended cost functional for individual pitch control is proposed based on the collective pitch control approach. The controller is evaluated in aero-servo-hydro-elastic simulations of a 5MW reference wind turbine disturbed by a three-dimensional stochastic turbulent wind field. Results show a significant blade fatigue load reduction compared to a baseline controller through minimizing yawing and pitching moments on the rotor hub while maintaining the advantages of the model predictive control approach with collective pitch control.
  • Thumbnail Image
    ItemOpen Access
    Flatness-based feedforward control of wind turbines using Lidar
    (2014) Schlipf, David; Cheng, Po Wen
    Current lidar technology is offering a promising opportunity to take a fresh look at wind turbine control. This work evaluates a flatness-based feedforward approach, that allows to calculate the control action based on trajectories of the rotor speed and tower motion using wind measurements. The trajectories are planned online considering actuator constrains to regulate the rotor speed and minimize tower movements. The feedforward signals of the collective pitch and generator torque update can be combined with conventional feedback controllers. This facilitates the application on commercial wind turbines. Simulations using a realistic lidar simulator and a full aero-elastic model show considerable reduction of tower and shaft loads.
  • Thumbnail Image
    ItemOpen Access
    Terrestrial laser scanning - a supplementary approach for 3D documentation and animation
    (2005) Böhm, Jan
    While aerial methods undesputedly form the backbone of modern photogrammetry, we have seen an increased use of terrestrial methods in the past years to supplement aerial data especially in the field of 3D city modelling and the animation thereof. This article describes an approach to use terrestrial laser scanning in order to increase detail and realism of datasets derived from arial methods. When devising a new strategy for the integration of data from multiple sources two aspects come to focus. For one methods for the registration of the datasets are needed. Secondly a suitable data model has to be introduced to hold multiple aspects of the data. Consequently we present our methods for the automatted georeferencing of terrestrial laser data and we introduce the concept of LASERMAPs, which are extracted from terrestrial laser data and mapped onto the 3D building model.
  • Thumbnail Image
    ItemOpen Access
    Realistic simulations of extreme load cases with lidar-based feedforward control
    (2017) Hagemann, Tim; Haizmann, Florian; Schlipf, David; Cheng, Po Wen
    This work presents the development of a simulation environment which allows to simulate realistic extreme events with lidar-based feedforward control. This environment includes turbulent wind fields including extreme events, wind evolution and wind field scanning with a nacelle-based lidar system. It is designed to simulate lidar-based controllers in a realistic environment. In addition, a controller extension is proposed to identify and mitigate extreme events in wind fields based on lidar measurements. The combination of this extreme event controller with the realistic simulation environment is a promising tool for load reductions in wind turbines.
  • Thumbnail Image
    ItemOpen Access
    How far do we see? Analysis of the measurement range of long-range lidar data for wind power forecasting
    (2017) Würth, Ines; Brenner, Alex; Wigger, Maayen; Cheng, Po Wen