06 Fakultät Luft- und Raumfahrttechnik und Geodäsie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7
Browse
Search Results
Item Open Access A time-accurate inflow coupling for zonal LES(2023) Blind, Marcel P.; Kleinert, Johannes; Lutz, Thorsten; Beck, AndreaGenerating turbulent inflow data is a challenging task in zonal large eddy simulation (zLES) and often relies on predefined DNS data to generate synthetic turbulence with the correct statistics. The more accurate, but more involved alternative is to use instantaneous data from a precursor simulation. Using instantaneous data as an inflow condition allows to conduct high fidelity simulations of subdomains of, e.g. an aircraft including all non-stationary or rare events. In this paper, we introduce a toolchain that is capable of interchanging highly resolved spatial and temporal data between flow solvers with different discretization schemes. To accomplish this, we use interpolation algorithms suitable for scattered data in order to interpolate spatially. In time, we use one-dimensional interpolation schemes for each degree of freedom. The results show that we can get stable simulations that map all flow features from the source data into a new target domain. Thus, the coupling is capable of mapping arbitrary data distributions and formats into a new domain while also recovering and conserving turbulent structures and scales. The necessary time and space resolution requirements can be defined knowing the resolution requirements of the used numerical scheme in the target domain.Item Open Access Wake tail plane interactions for a tandem wing configuration in high-speed stall conditions(2023) Kleinert, Johannes; Ehrle, Maximilian; Waldmann, Andreas; Lutz, ThorstenIn this work, wake-tail plane interactions are investigated for a tandem wing configuration in buffet conditions, consisting of two untapered and unswept wing segments, using hybrid Reynolds-Averaged Navier–Stokes / Large Eddy Simulations (RANS/LES) with the Automated Zonal Detached Eddy Simulation (AZDES) method. The buffet on the front wing and the development of its turbulent wake are characterized, including a spectral analysis of the fluctuations in the wake and a modal analysis of the flow. The impact of the wake on the aerodynamics and loads of the rear wing is then studied, with a spectral analysis of its lift and surface pressure oscillations. Finally, the influence of the position and the incidence angle of the rear wing is investigated. For the considered flow conditions, 2D buffet is present on the front wing. During the downstream movement of the shock, the amount of separation reaches its minimum and small vortices are present in the wake. During the upstream movement of the shock, the amount of separation is at its maximum and large turbulent structures are present accompanied by high fluctuation levels. A distinct peak in the corresponding spectra can be associated with vortex shedding behind the wing. The impingement of the wake leads to a strong variation of the loading of the rear wing. A low-frequent oscillation of the lift, attributed to the change of the intensity of the downwash generated by the front segment, can be distinguished from high-frequent fluctuations that are caused by the impingement of the wake’s turbulent structures.Item Open Access Numerical simulation of wake interactions on a tandem wing configuration in high-speed stall conditions(2023) Kleinert, Johannes; Stober, Jonathan; Lutz, ThorstenIn this work, the interaction of the separated wake of the front wing with the rear wing of a tandem configuration is investigated for high-speed stall conditions by means of hybrid RANS/LES simulations, using the zonal AZDES method. After a characterization of the transonic buffet on the front wing, the development of the separated turbulent wake behind the wing is investigated. The interaction of the separated wake with the rear wing is then analyzed in detail. The results reveal that there is a strong variation in the wake characteristics over the buffet cycle, caused by the varying amount of separation on the front wing. During the upstream movement of the shock, the flow is largely separated, resulting in a thick wake with strong, high-frequent fluctuations that can be attributed to large turbulent vortices. On the contrary, when the shock travels downstream, there is only a small amount of separation present, resulting in a thin wake with comparatively low fluctuations that are caused by corresponding smaller turbulent vortices. The impact of the wake of the front wing causes a strong variation in the rear wing loading. An oscillation with a comparatively low frequency can be distinguished from high-frequent fluctuations. The low-frequent oscillation is caused by the variation in the downwash behind the front wing as its lift changes during the buffet cycle. The high-frequent fluctuations are due to the impingement of the turbulent structures onto the rear wing. Because both size and frequency of those vortices vary significantly within the buffet cycle, the amplitude and frequency of the lift and surface pressure fluctuations also change accordingly.