06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7

Browse

Search Results

Now showing 1 - 10 of 16
  • Thumbnail Image
    ItemOpen Access
    Monitoring of the production process of graded concrete component using terrestrial laser scanning
    (2021) Yang, Yihui; Balangé, Laura; Gericke, Oliver; Schmeer, Daniel; Zhang, Li; Sobek, Werner; Schwieger, Volker
  • Thumbnail Image
    ItemOpen Access
    Optimization of the groundwater remediation process using a coupled genetic algorithm-finite difference method
    (2021) Seyedpour, Seyed Morteza; Valizadeh, Iman; Kirmizakis, Panagiotis; Doherty, Rory; Ricken, Tim
    In situ chemical oxidation using permanganate as an oxidant is a remediation technique often used to treat contaminated groundwater. In this paper, groundwater flow with a full hydraulic conductivity tensor and remediation process through in situ chemical oxidation are simulated. The numerical approach was verified with a physical sandbox experiment and analytical solution for 2D advection-diffusion with a first-order decay rate constant. The numerical results were in good agreement with the results of physical sandbox model and the analytical solution. The developed model was applied to two different studies, using multi-objective genetic algorithm to optimise remediation design. In order to reach the optimised design, three objectives considering three constraints were defined. The time to reach the desired concentration and remediation cost regarding the number of required oxidant sources in the optimised design was less than any arbitrary design.
  • Thumbnail Image
    ItemOpen Access
    Control co-design optimization of floating offshore wind turbines with tuned liquid multi-column dampers
    (2024) Yu, Wei; Zhou, Sheng Tao; Lemmer, Frank; Cheng, Po Wen
    The technical progress in the development and industrialization of floating offshore wind turbines (FOWTs) over the past decade has been significant. Yet, the higher levelized cost of energy (LCOE) of FOWTs compared to onshore wind turbines is still limiting the market share. One of the reasons for this is the larger motions and loads caused by the rough environmental excitations. Many prototype projects tend to employ more conservative substructure designs to meet the requirements for motion dynamics and structural safety. Another challenge lies in the multidisciplinary nature of a FOWT system, which consists of several strongly coupled subsystems. If these subsystems cannot work in synergy, the overall system performance may not be optimized. Previous research has shown that a well-designed blade pitch controller is able to reduce the motions and structural loads of FOWTs. Nevertheless, due to the negative aerodynamic damping effect, improvement in the performance by tuning the controller is limited. One of the solutions is adding tuned liquid multi-column dampers (TLMCDs), meaning that there is a structural solution to mitigate this limiting factor for the controller performance. It has been found that the additional damping, provided by TLMCDs, is able to improve the platform pitch stability, which allows a larger blade pitch controller bandwidth and thus a better dynamic response. However, if a TLMCD is not designed with the whole FOWT system dynamics taken into account, it may even deteriorate the overall performance. Essentially, an integrated optimization of these subsystems is needed. For this paper, we develop a control co-design optimization framework for FOWTs installed with TLMCDs. Using the multi-objective optimizer non-dominated sorting genetic algorithm II (NSGA-II), the objective is to optimize the platform, the blade pitch controller, and the TLMCD simultaneously. Five free variables characterizing these subsystems are selected, and the objective function includes the FOWT's volume of displaced water (displacement) and several motion and load indicators. Instead of searching for a unique optimal design, an optimal Pareto surface of the defined objectives is determined. It has been found that the optimization is able to improve the dynamic performance of the FOWT, which is quantified by motions and loads, when the displacement remains similar. On the other hand, if motions and loads are constant, the displacement of the FOWT can be reduced, which is an important indication of lower manufacturing, transportation, and installation costs. In conclusion, this work demonstrates the potential of advanced technologies such as TLMCDs to advance FOWTs for commercial competitiveness.
  • Thumbnail Image
    ItemOpen Access
    Quantification of amplitude modulation of wind turbine emissions from acoustic and ground motion recordings
    (2023) Blumendeller, Esther; Gaßner, Laura; Müller, Florian J. Y.; Pohl, Johannes; Hübner, Gundula; Ritter, Joachim; Cheng, Po Wen
  • Thumbnail Image
    ItemOpen Access
    Dry fibre placement : the influence of process parameters on mechanical laminate properties and infusion behaviour
    (2021) Grisin, Benjamin; Carosella, Stefan; Middendorf, Peter
    Within the dry fibre placement (DFP) process, spread and pre-bindered carbon fibre rovings are automatically processed into dry textile preforms using 2-D and 3-D laying systems. The aim was to automate existing hand lay-up processes, reducing the complexity, increasing robustness, and facilitating the handling of the DFP technology. Process reliability, low waste rates, and flexible production are demonstrated. In this publication, the influences of the process parameters, 2 mm wide gaps and the percentage of 90° plies in the laminate, are investigated with regard to the mechanical properties, the permeability, and the infusion times in the preform z-direction (thickness). The effects on stiffness and strength are compared for several use cases. An approach to determine the infusion times as a function of the laminate thickness, the ply structure, and 2 mm wide gaps is demonstrated and analysed using vacuum-assisted process (VAP) infusion tests. The investigations are performed with carbon fibre tows (24 k), a reactive epoxy-based binder system, and a thermoset infusion resin system.
  • Thumbnail Image
    ItemOpen Access
    Numerical aspects of a two-way coupling for electro-mechanical interactions - a wind energy perspective
    (2022) Lüdecke, Fiona Dominique; Schmid, Martin; Rehe, Eva; Panneer Selvam, Sangamithra; Parspour, Nejila; Cheng, Po Wen
  • Thumbnail Image
    ItemOpen Access
    Radargrammetric DSM generation by semi-global matching and evaluation of penalty functions
    (2022) Wang, Jinghui; Gong, Ke; Balz, Timo; Haala, Norbert; Sörgel, Uwe; Zhang, Lu; Liao, Mingsheng
    Radargrammetry is a useful approach to generate Digital Surface Models (DSMs) and an alternative to InSAR techniques that are subject to temporal or atmospheric decorrelation. Stereo image matching in radargrammetry refers to the process of determining homologous points in two images. The performance of image matching influences the final quality of DSM used for spatial-temporal analysis of landscapes and terrain. In SAR image matching, local matching methods are commonly used but usually produce sparse and inaccurate homologous points adding ambiguity to final products; global or semi-global matching methods are seldom applied even though more accurate and dense homologous points can be yielded. To fill this gap, we propose a hierarchical semi-global matching (SGM) pipeline to reconstruct DSMs in forested and mountainous regions using stereo TerraSAR-X images. In addition, three penalty functions were implemented in the pipeline and evaluated for effectiveness. To make accuracy and efficiency comparisons between our SGM dense matching method and the local matching method, the normalized cross-correlation (NCC) local matching method was also applied to generate DSMs using the same test data. The accuracy of radargrammetric DSMs was validated against an airborne photogrammetric reference DSM and compared with the accuracy of NASA’s 30 m SRTM DEM. The results show the SGM pipeline produces DSMs with height accuracy and computing efficiency that exceeds the SRTM DEM and NCC-derived DSMs. The penalty function adopting the Canny edge detector yields a higher vertical precision than the other two evaluated penalty functions. SGM is a powerful and efficient tool to produce high-quality DSMs using stereo Spaceborne SAR images.
  • Thumbnail Image
    ItemOpen Access
    Evaluating impacts of irrigation and drought on river, groundwater and a terminal wetland in the Zayanderud Basin, Iran
    (2020) Abou Zaki, Nizar; Torabi Haghighi, Ali; Rossi, Pekka M.; Tourian, Mohammad J.; Bakhshaee, Alireza; Kløve, Bjørn
    The Zayanderud Basin is an important agricultural area in central Iran. In the Basin, irrigation consumes more than 90 percent of the water used, which threatens both the downstream historical city of Isfahan and the Gavkhuni Wetland reserve-the final recipient of the river water. To analyze impacts of land use changes and the occurrence of metrological and hydrological drought, we used groundwater data from 30 wells, the standardized precipitation index (SPI) and the streamflow drought index (SDI). Changes in the wetland were analyzed using normalized difference water index (NDWI) values and water mass depletion in the Basin was also assessed with gravity recovery and climate experiment (GRACE)-derived data. The results show that in 45 out of studied 50 years, the climate can be considered as normal in respect to mean precipitation amount, but hydrological droughts exist in more than half of the recorded years. The hydrological drought occurrence increased after the 1970s when large irrigation schemes were introduced. In recent decades, the flow rate reached zero in the downstream part of the Zayanderud River. NDWI values confirmed the severe drying of the Gavkhuni Wetland on several occasions, when compared to in situ data. The water mass depletion rate in the Basin is estimated to be 30 (±5) mm annually; groundwater exploitation has reached an average of 365 Mm3 annually, with a constant annual drop of 1 to 2.5 meters in the groundwater level annually. The results demonstrate the connection between groundwater and surface water resources management and highlight that groundwater depletion and the repeated occurrence of the Zayanderud River hydrological drought are directly related to human activities. The results can be used to assess sustainability of water management in the Basin.
  • Thumbnail Image
    ItemOpen Access
    A novel spatial filter to reduce north-south striping noise in GRACE spherical harmonic coefficients
    (2022) Yi, Shuang; Sneeuw, Nico
    Prevalent north-south striping (NSS) noise in the spherical harmonic coefficient products of the satellite missions gravity recovery and climate experiment greatly impedes the interpretation of signals. The overwhelming NSS noise always leads to excessive smoothing of the data, allowing a large room for improvement in the spatial resolution if this particular NSS noise can be mitigated beforehand. Here, we put forward a new spatial filter that can effectively remove NSS noise while remaining orthogonal to physical signals. This new approach overcomes the limitations of the previous method proposed by Swenson and Wahr (2006), where signal distortion was large and high-order coefficients were uncorrectable. The filter is based on autocorrelation in the longitude direction and cross-correlation in the latitude direction. The NSS-type noise identified by our method is mainly located in coefficients of spherical harmonic order larger than about 20 and degree beyond 30, spatially between latitudes ± 60°. After removing the dominating NSS noise with our method, a weaker filter than before is added to handle the residual noise. Thereby, the spatial resolution can be increased and the amplitude damping can be reduced. Our method can coincidentally reduce outliers in time series without significant trend bias, which underpins its effectiveness and reliability.
  • Thumbnail Image
    ItemOpen Access
    Numerical analyses and optimizations on the flow in the nacelle region of a wind turbine
    (2018) Weihing, Pascal; Wegmann, Tim; Lutz, Thorsten; Krämer, Ewald; Kühn, Timo; Altmikus, Andree
    The present study investigates flow dynamics in the hub region of a wind turbine focusing on the influence of nacelle geometry on the root aerodynamics by means of Reynolds averaged Navier–Stokes simulations with the code FLOWer. The turbine considered is a generic version of the Enercon E44 converter incorporating blades with flat-back-profiled root sections. First, a comparison is drawn between an isolated rotor assumption and a setup including the baseline nacelle geometry in order to elaborate the basic flow features of the blade root. It was found that the nacelle reduces the trailed circulation of the root vortices and improves aerodynamic efficiency for the inner portion of the rotor; on the other hand, it induces a complex vortex system at the juncture to the blade that causes flow separation. The origin of these effects is analyzed in detail. In a second step, the effects of basic geometric parameters describing the nacelle have been analyzed with the purpose of increasing the aerodynamic efficiency in the root region. Therefore, three modification categories have been addressed: the first alters the nacelle diameter, the second varies the blade position relative to the nacelle and the third comprises modifications in the vicinity of the blade-nacelle junction. The impact of the geometrical modifications on the local flow physics are discussed and assessed with respect to aerodynamic performance in the blade root region. It was found that increasing the nacelle diameter deteriorates the root aerodynamics, since the flow separation becomes more pronounced. Possible solutions identified to reduce the flow separation are a shift of the blade in the direction of the rotation or the installation of a fairing fillet in the junction between the blade and the nacelle.