06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    ItemOpen Access
    Quantification and mitigation of PIV bias errors caused by intermittent particle seeding and particle lag by means of large eddy simulations
    (2021) Martins, Fabio J. W. A.; Kirchmann, Jonas; Kronenburg, Andreas; Beyrau, Frank
    In the present work, a standard large eddy simulation is combined with tracer particle seeding simulations to investigate the different PIV bias errors introduced by intermittent particle seeding and particle lag. The intermittency effect is caused by evaluating the velocity from tracer particles with inertia in a region where streams mix with different seeding densities. This effect, which is different from the vastly-discussed particle lag, is frequently observed in the literature but scarcely addressed. Here, bias errors in the velocity are analysed in the framework of a turbulent annular gaseous jet weakly confined by low-momentum co-flowing streams. The errors are computed between the gaseous flow velocity, obtained directly from the simulation, and the velocities estimated from synthetic PIV evaluations. Tracer particles with diameters of 0.037, 0.37 and 3.7 µm are introduced into the simulated flow through the jet only, intermediate co-flowing stream only and through both regions. Results quantify the influence of intermittency in the time-averaged velocities and Reynolds stresses when only one of the streams is seeded, even when tracers fulfil the Stokes-number criterion. Additionally, the present work proposes assessing unbiased velocity statistics from large eddy simulations, after validation of biased seeded simulations with biased PIV measurements. The approach can potentially be applied to a variety of flows and geometries, mitigating the bias errors.
  • Thumbnail Image
    ItemOpen Access
    Carrier-phase DNS of ignition and combustion of iron particles in a turbulent mixing layer
    (2024) Luu, Tien Duc; Shamooni, Ali; Kronenburg, Andreas; Braig, Daniel; Mich, Johannes; Nguyen, Bich-Diep; Scholtissek, Arne; Hasse, Christian; Thäter, Gabriel; Carbone, Maurizio; Frohnapfel, Bettina; Stein, Oliver Thomas
    Three-dimensional carrier-phase direct numerical simulations (CP-DNS) of reacting iron particle dust clouds in a turbulent mixing layer are conducted. The simulation approach considers the Eulerian transport equations for the reacting gas phase and resolves all scales of turbulence, whereas the particle boundary layers are modelled employing the Lagrangian point-particle framework for the dispersed phase. The CP-DNS employs an existing sub-model for iron particle combustion that considers the oxidation of iron to FeO and that accounts for both diffusion- and kinetically-limited combustion. At first, the particle sub-model is validated against experimental results for single iron particle combustion considering various particle diameters and ambient oxygen concentrations. Subsequently, the CP-DNS approach is employed to predict iron particle cloud ignition and combustion in a turbulent mixing layer. The upper stream of the mixing layer is initialised with cold particles in air, while the lower stream consists of hot air flowing in the opposite direction. Simulation results show that turbulent mixing induces heating, ignition and combustion of the iron particles. Significant increases in gas temperature and oxygen consumption occur mainly in regions where clusters of iron particles are formed. Over the course of the oxidation, the particles are subjected to different rate-limiting processes. While initially particle oxidation is kinetically-limited it becomes diffusion-limited for higher particle temperatures and peak particle temperatures are observed near the fully-oxidised particle state. Comparing the present non-volatile iron dust flames to general trends in volatile-containing solid fuel flames, non-vanishing particles at late simulation times and a stronger limiting effect of the local oxygen concentration on particle conversion is found for the present iron dust flames in shear-driven turbulence.
  • Thumbnail Image
    ItemOpen Access
    Assessment of numerical accuracy and parallel performance of OpenFOAM and its reacting flow extension EBIdnsFoam
    (2023) Zirwes, Thorsten; Sontheimer, Marvin; Zhang, Feichi; Abdelsamie, Abouelmagd; Pérez, Francisco E. Hernández; Stein, Oliver T.; Im, Hong G.; Kronenburg, Andreas; Bockhorn, Henning
    OpenFOAM is one of the most widely used open-source computational fluid dynamics tools and often employed for chemical engineering applications. However, there is no systematic assessment of OpenFOAM’s numerical accuracy and parallel performance for chemically reacting flows. For the first time, this work provides a direct comparison between OpenFOAM’s built-in flow solvers as well as its reacting flow extension EBIdnsFoam with four other, well established high-fidelity combustion codes. Quantification of OpenFOAM’s numerical accuracy is achieved with a benchmark suite that has recently been established by Abdelsamie et al. (Comput Fluids 223:104935, 2021. https://doi.org/10.1016/j.compfluid.2021.104935 ) for combustion codes. Fourth-order convergence can be achieved with OpenFOAM’s own cubic interpolation scheme and excellent agreement with other high-fidelity codes is presented for incompressible flows as well as more complex cases including heat conduction and molecular diffusion in multi-component mixtures. In terms of computational performance, the simulation of incompressible non-reacting flows with OpenFOAM is slower than the other codes, but similar performance is achieved for reacting flows with excellent parallel scalability. For the benchmark case of hydrogen flames interacting with a Taylor-Green vortex, differences between low-Mach and compressible solvers are identified which highlight the need for more investigations into reliable benchmarks for reacting flow solvers. The results from this work provide the first contribution of a fully implicit compressible combustion solver to the benchmark suite and are thus valuable to the combustion community. The OpenFOAM cases are publicly available and serve as guide for achieving the highest numerical accuracy as well as a basis for future developments.