06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    Down-regulation and individual blade control as lifetime extension enablers
    (2018) Pettas, Vasilis; Cheng, Po Wen
    As more and more wind turbines are coming close to the end of their design lifetime, evaluation of end of life strategies is becoming highly relevant. Moreover, as turbine technology matures and wind farms grow larger, lifetime extension becomes a financially attractive option compared to re-powering and decommissioning. Present work suggests control strategies, namely down-regulation and individual blade control, as lifetime extension enablers. The concept of using them as retrofit control implementations is explained. Their individual and combined potential in fatigue load reduction is evaluated, along with their effect on other performance and pitch system metrics. Finally, the possible period of extension, beyond the nominal 20 years, is evaluated in an example case where the retrofit control strategy is applied after 15 years of baseline operation. The aeroelastic simulations are performed with a 10 MW reference wind turbine, according to load certification standards. Results show that the two methods complement each other in load alleviation. The pitch actuator demands are also significantly decreased when the two methods are combined.
  • Thumbnail Image
    ItemOpen Access
    Investigation on the potential of individual blade control for lifetime extension
    (2018) Pettas, Vasilis; Salari, Mohammad; Schlipf, David; Cheng, Po Wen
    In recent years the focus of wind energy industry is on reducing levelized cost of energy by rotor upscaling. Moreover, a current topic of interest to both industry and academia is the extension of lifetime to existing wind turbines approaching the end of initial design span. Thus, the need for load alleviation technologies integrated in the design process or for retrofit purposes is becoming more relevant. One of these is individual blade pitch control, a recurring topic in research, with known advantages and weaknesses namely the pitch actuator and bearing wear. The present work suggests such a system incorporating three independent controllers with input the root bending moments on the rotating frame. The linear system used for controller design is based on black box identification of non-linear simulations and filters are used both for the input and output. Different setups of the independent blade control scheme are applied on a 10 MW reference turbine, with a large and highly flexible rotor representative of the current industrial status, under wind conditions as defined by relevant certification standards. The investigation aims on evaluating the system’s performance based on the fatigue load alleviation potential for different components as well as identifying the tradeoff for each design choice. Finally, based on basic assumptions the reductions are translated to possible life time extension for each component based on a combined operation where the new controllers are applied for a percentage of the initial 20 year lifetime.