06 Fakultät Luft- und Raumfahrttechnik und Geodäsie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7
Browse
6 results
Search Results
Item Open Access "A la recherche du temps perdu" : on geological condensation, with examples from the Jurassic Subbetic Plateau in Southeastern Spain(1993) Fels, Alexander; Seyfried, HartmutEine kondensierte Ablagerung ist eine marine Rückstandsbildung, die sich autochthon und kontinuierlich über einen längeren Zeitraum hinweg gebildet hat. Kondensation kann synsedimentar durch Abschirmung, Ablenkung oder Abtragung von Schlamm erfolgen; diagenetisch läuft Kondensation vor allem über Bioerosion auf Hartboden in Verbindung mit unterschiedlich tiefgreifender Erosion ab. Im Jura des subbetischen Plateaus (früher "externes Subbetikum") wird das Umkippen in eine Kondensations-Situation durch tektonische Bewegungen gesteuert, indem benachbarte Plattformen den Export von Schlamm selbssteuernd regulieren. Das subbetische Plateau durchlief vier Phasen stark reduzierter Sedimentation: Carixien - Unter-Domerien(Kondensatlonsepisode 1), Obertoarcien - Unter-Bajocien (Kondensationsepisode 2), Unterbathonien - Unter-Oxfordien (Kondensationsepisode 3) und unterstes Kimmeridgien (Kondensationsepisode 4). Hartboden, die sich während dieser Episoden bildeten, sind meistens von Goethitkrusten und Goethitonkoiden bedeckt. Die meisten Goethitkrusten bestehen entweder aus sehr dünnen (20 - 50 p.) Laminae mit krümeligem und pseudofilamentösem Gefüge, die für einen mikrobiellen Ursprung der Krusten sprechen, oder sie bestehen aus strukturlosem, "sterilen" Goethiterz. Aus einer Abschätzung der Wachstumsraten folgern wir, daß der überwiegende Teil der Zeit, die in solchen Krusten versteckt ist, entweder im nur wenige Milimeter dicken Goethiterz dokumentlert ist oder in Hartböden bzw. Erosionsflächen gelöscht wurde. Kondensierte Abfolgen zelgen meistens eine hierarchische Gliederung in Sequenzen, die vom Meter- bis zum Millimeterbereich reichen und nahezu stets denselben Aufbau haben: sie beginnen mit reduzierter Sedimentation, auf die ein Omissionsstadium folgt und schließen melstens mlt Goethitkrusten ab. Unter den vielen Faktoren, die für eine solche Abfolge verantwortlich sein konnen, kristallisiert sich als kleinster gemeinsamer Nenner ein (nicht eindeutig kalibrierbares) eustatisches Signal heraus. Wir betrachten deshalb kondensierte Sequenzen, die Goethitkrusten enthalten, als pelagische Parasequenzen.Item Open Access Depositional sequences and sequence boundaries in fore-arc coastal embayments : case histories from Central America(1991) Schmidt, Hannelore; Seyfried, HartmutFrom Oligocene to Recent times a series of tectonically controlled coastal embayments formed on the Pacific fore-arc side of the southern Central American island-arc system. Each of these basins shows characteristic stratal geometries and facies distributions reflecting the complex interaction of changes of sea level, volcaniclastic input, and tectonic activity (subsidence, uplift). Sequential stratigraphic correlations based on sequence analysis and discontinuity surfaces indicate that eustatic sea-level changes control architecture, geometry, and facies distribution of depositional sequences at the level of second-order cycles. Owing to the particular tectonic position, complete sets of systems tracts are seldom developed. Voluminous sediment supply, especially during episodes of strong volcanic activity, may overcompensate transgressions. Strong uplift may annihilate any sedimentary documentation or reduce sequences to a strongly condensed package with random preservation of estuarine or deltaic facies. The bounding uncomformities (sequence boundaries) are traceable on a regional scale and are related at the level of second-order sequence boundaries to tectonic events that repeatedly affected the island arc during the episode in question.Item Open Access Sea level change : a philosophical approach(1993) Leinfelder, Reinhold; Seyfried, HartmutThe present Cenozoic era is an lsquoicehousersquo episode characterized by a low sea level. Since the beginning of the industrial revolution, the human race has been emitting greenhouse gases, increasing the global atmospheric temperature, and causing a rise in sea level. If emissions continue to increase at the present rate, average global temperatures may rise by 1.5°C by the year 2050, accompanied by a rise of about 30 cm in sea level. However, the prediction of future climatic conditions and sea level is hampered by the difficulty in modelling the interactions between the lithosphere, kryosphere, biosphere and atmosphere; in addition, the buffering capacity of our planet is still poorly understood. As scientists cannot offer unambiguous answers to simple questions, sorcerer's apprentices fill in the gaps, presenting plans to save planet without inconveniencing us. The geological record can help us to learn about the regulation mechanisms of our planet, many of which are connected with or expressed as sea level changes. Global changes in sea level are either tectono-eustatic or glacioeustatic. Plate tectonic processes strongly control sea levels and climate in the long term. There is a strong feed-back mechanism between sea level and climate; both can influence and determine each other. Although high sea levels are a powerful climatic buffer, falling sea levels accelerate climatic accentuation, the growth of the polar ice caps and will hence amplify the drop in sea level. Important sources of fossil greenhouse gases are botanic CO2 production, CO2 released by volcanic activity, and water vapour. The latter is particularly important when the surface area of the sea increases during a rise in sea level (lsquomaritime greenhouse effectrsquo). A lsquovolcanogenic greenhouse effectrsquo (release of volcanogenic CO2) is possibly not equally important, as intense volcanic activity may take place both during icehouse episodes as well as during greenhouse episodes. The hydrosphere, land vegetation and carbonate platforms are major CO2 buffers which may both take up and release CO2. CO2 can be released from the ocean due to changes in the pCO2 caused by growth of coral reefs and by uptake of CO2-rich freshwater from karst provinces. Efficient sinks of CO2 are the weathering products of silicate rocks; long-term sinks are organic deposits caused by regional anoxic events which preferrably develop during sea level rises and highstands; and coal-bearing strata. Deposition of limestone also removes CO2 from the atmospheric-hydrospheric cycle at a long term. Biotic crises are often related to either sea-level lows or sea-level highs. Long-term sea-level lows, characteristic of glacial periods, indicate cooling as major cause of extinction. During verly long-lasting greenhouse episodes the sea level is very high, climate and circulation systems are stable and biotic crises often develop as a consequence of oxygen depletion. On land, niche-splitting, complex food web structures and general overspecialization of biota will occur. Whether the crisis is caused by a single anoxic event (e.g. in the Late Devonian) or a disturbance by an asteroid impact (e.g. the Cretaceous/Tertiary boundary), it will only trigger total collapse of an ecosystem if a large part of it was already in decline. The regulatory mechanisms and buffers are thermodynamically extremely efficient if they are given sufficient time in which to deploy their power. However, after major catastrophes the re-establishment of successful ecosystems will take millions of years. The present rate of sea level and associated temperature rise is much too fast to be compensated and buffered by the network of natural controls. It is likely that the transitional time towards a new steady state will be an extremely variable and chaotic episode of unpredictable duration.Item Open Access Response of deep-water fore-arc systems to sea-level changes, tectonic activity and volcaniclastic input in Central America(1991) Winsemann, Jutta; Seyfried, HartmutThe incipient island-arc system of southern Central America (Cretaceous - early Oligocene) is characterized by thick turbidite systems, which mainly filled inner fore-arc troughs. Outcrop data show four second-order depositional sequences in the deep-water sediments. The formation of these depositional sequences is strongly related to the morphotectonic evolution of the island-arc system. Each depositional sequence reflects the complex interaction between global sea-level fluctuations, sediment supply and tectonic activity. Strong marginal uplift and high volcaniclastic sediment supply during early to late Paleocene and late Eocene times caused the formation of coarse-grained channel-lobe systems. During late Paleocene and mid-Eocene times, fine-grained, thin-bedded turbidite systems were deposited, owing to regional subsidence and a decrease in volcanic supply. Uplift and subsidence of sediment-source areas acted as major controls on deposition of basinal cycles.Item Open Access Ein Planet organisiert sich selbst(2005) Seyfried, HartmutDie vielschichtigen Selbststeuerungs- und Selbstorganisationsprozesse unserer Erde erscheinen uns kompliziert, solange wir sie nicht verstehen – oder nicht verstehen wollen. Mit fortschreitender Verstädterung schwindet unsere kollektive Fähigkeit, das Wesen der Dinge außerhalb unserer menschengemachten Welt zu erkennen. Deshalb unser Hang zu brachialen Lösungen, wann immer wir mit der Natur konfrontiert sind. Natürliche Systeme sind nicht kompliziert, sondern komplex. Komplexität bedeutet, dass es viele Handlungsmöglichkeiten gibt und nicht nur einer, sondern viele Wege durch das Labyrinth der Erkenntnis führen. Die meisten dieser Wege sind wir noch nicht gegangen, weil virtuelle – nicht materielle – Hindernisse vor ihnen stehen, die sich bei genauerem Hinsehen als überaus seltsam und in den meisten Fällen als unvernünftig erweisen.Item Open Access Anatomy of an evolving island arc : tectonic and eustatic control in the south Central American fore-arc area(1991) Seyfried, Hartmut; Astorga, Allan; Ammann, Hubert; Calvo, Claudio; Kolb, Wolfgang; Schmidt, Hannelore; Winsemann, JuttaThe southern part of the Central American isthmus is the product of an island arc. It evolved initially as a ridge of primitive island-arc tholeiites at a collision zone between the Farallon plate and proto-Caribbean crust (Albian-Santonian). During the Campanian, a major tectonic event (most probably subduction reversal) caused décollement of different units of the former plate margin. The resulting structural high was covered by a carbonate platform. From Maastrichtian to Eocenc times continuous subduction produced a stable morphotectonic configuration (trench-slope-outer-arc-fore-arccalcalkaline-arc). Fore-arc sedimentation was controlled by volcaniclastic input and tectonic activity along the outer arc's inner margin. Eustatic control is essentially recognized through lowstand signals such as extensive turbidite sand lobes. Steady accretionary uplift of the outer arc gradually closed the bypasses between forc-arc and trench slope. Eustatic control is verified by lowstand signals (sands) on the trench slope and highstand signals on the outer arc (carbonate ramps). During the Oligocene another major tectonic event affected the entire system: accretion ceased, segments decoupled, and regional compression resulted in general uplift and erosion. From latest Oligocene to Pliocene times, three episodes of tilting created a series of fault-angle depressions. Subsidence varies enormously among these basins. but sedimentation is largely shallow marine. Facies architecture reflects complex interactions between tectonic processes, changes in volcaniclastic sediment supply, and eustasy. Subsequently. very strong explosive volcanic activity resulted in excessive sediment input that overfilled most basins. The history of the island arc shows that tectonic processes largely controlled composition, distribution and geometry of the major sedimentary units. Eustatic signals do indeed occur when they are expected, but may be considered as an overprint rather than a dominating factor.