06 Fakultät Luft- und Raumfahrttechnik und Geodäsie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7
Browse
Search Results
Item Open Access High-dimensional experiments for the downward continuation using the LRFMP algorithm(2024) Schneider, Naomi; Michel, Volker; Sneeuw, NicoTime-dependent gravity data from satellite missions like GRACE-FO reveal mass redistribution in the system Earth at various time scales: long-term climate change signals, inter-annual phenomena like El Niño, seasonal mass transports and transients, e. g. due to earthquakes. For this contemporary issue, a classical inverse problem has to be considered: the gravitational potential has to be modelled on the Earth’s surface from measurements in space. This is also known as the downward continuation problem. Thus, it is important to further develop current mathematical methods for such inverse problems. For this, the (Learning) Inverse Problem Matching Pursuits ((L)IPMPs) have been developed within the last decade. Their unique feature is the combination of local as well as global trial functions in the approximative solution of an inverse problem such as the downward continuation of the gravitational potential. In this way, they harmonize the ideas of a traditional spherical harmonic ansatz and the radial basis function approach. Previous publications on these methods showed proofs of concept. In this paper, we report on the progress of our developments towards more realistic scenarios. In particular, we consider the methods for high-dimensional experiment settings with more than 500 000 grid points which yields a resolution of 20 km at best on a realistic satellite geometry. We also explain the changes in the methods that had to be done to work with such a large amount of data.Item Open Access Remote sensing-based extension of GRDC discharge time series : a monthly product with uncertainty estimates(2024) Elmi, Omid; Tourian, Mohammad J.; Saemian, Peyman; Sneeuw, NicoThe Global Runoff Data Center (GRDC) data set has faced a decline in the number of active gauges since the 1980s, leaving only 14% of gauges active as of 2020. We develop the Remote Sensing-based Extension for the GRDC (RSEG) data set that can ingest legacy gauge discharge and remote sensing observations. We employ a stochastic nonparametric mapping algorithm to extend the monthly discharge time series for inactive GRDC stations, benefiting from satellite imagery- and altimetry-derived river width and water height observations. After a rigorous quality assessment of our estimated discharge, involving statistical validation, tests and visual inspection, results in the extension of discharge records for 3377 out of 6015 GRDC stations. The quality of discharge estimates for the rivers with a large or medium mean discharge is quite satisfactory (average KGE value > 0.5) however for river reaches with a low mean discharge the average KGE value drops to 0.33.The RSEG data set regains monitoring capability for 83% of total river discharge measured by GRDC stations, equivalent to 7895 km 3 /month.