06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    ItemOpen Access
    Downscaling GRACE total water storage change using partial least squares regression
    (2021) Vishwakarma, Bramha Dutt; Zhang, Jinwei; Sneeuw, Nico
    The Gravity Recovery And Climate Experiment (GRACE) satellite mission recorded temporal variations in the Earth’s gravity field, which are then converted to Total Water Storage Change (TWSC) fields representing an anomaly in the water mass stored in all three physical states, on and below the surface of the Earth. GRACE provided a first global observational record of water mass redistribution at spatial scales greater than 63000 km2. This limits their usability in regional hydrological applications. In this study, we implement a statistical downscaling approach that assimilates 0.5° × 0.5° water storage fields from the WaterGAP hydrology model (WGHM), precipitation fields from 3 models, evapotranspiration and runoff from 2 models, with GRACE data to obtain TWSC at a 0.5° × 0.5° grid. The downscaled product exploits dominant common statistical modes between all the hydrological datasets to improve the spatial resolution of GRACE. We also provide open access to scripts that researchers can use to produce downscaled TWSC fields with input observations and models of their own choice.
  • Thumbnail Image
    ItemOpen Access
    Analytical solutions for gravitational potential up to its third-order derivatives of a tesseroid, spherical zonal band, and spherical shell
    (2023) Deng, Xiao-Le; Sneeuw, Nico
    The spherical shell and spherical zonal band are two elemental geometries that are often used as benchmarks for gravity field modeling. When applying the spherical shell and spherical zonal band discretized into tesseroids, the errors may be reduced or cancelled for the superposition of the tesseroids due to the spherical symmetry of the spherical shell and spherical zonal band. In previous studies, this superposition error elimination effect (SEEE) of the spherical shell and spherical zonal band has not been taken seriously, and it needs to be investigated carefully. In this contribution, the analytical formulas of the signal of derivatives of the gravitational potential up to third order (e.g., V , Vz, Vzz, Vxx, Vyy, Vzzz, Vxxz, and Vyyz) of a tesseroid are derived when the computation point is situated on the polar axis. In comparison with prior research, simpler analytical expressions of the gravitational effects of a spherical zonal band are derived from these novel expressions of a tesseroid. In the numerical experiments, the relative errors of the gravitational effects of the individual tesseroid are compared to those of the spherical zonal band and spherical shell not only with different 3D Gauss–Legendre quadrature orders ranging from (1,1,1) to (7,7,7) but also with different grid sizes (i.e., 5∘×5∘, 2∘×2∘, 1∘×1∘, 30′×30′, and 15′×15′) at a satellite altitude of 260 km. Numerical results reveal that the SEEE does not occur for the gravitational components V , Vz, Vzz, and Vzzzof a spherical zonal band discretized into tesseroids. The SEEE can be found for the Vxxand Vyy, whereas the superposition error effect exists for the Vxxzand Vyyzof a spherical zonal band discretized into tesseroids on the overall average. In most instances, the SEEE occurs for a spherical shell discretized into tesseroids. In summary, numerical experiments demonstrate the existence of the SEEE of a spherical zonal band and a spherical shell, and the analytical solutions for a tesseroid can benefit the investigation of the SEEE. The single tesseroid benchmark can be proposed in comparison to the spherical shell and spherical zonal band benchmarks in gravity field modeling based on these new analytical formulas of a tesseroid.
  • Thumbnail Image
    ItemOpen Access
    Current availability and distribution of Congo Basin’s freshwater resources
    (2023) Tourian, Mohammad J.; Papa, Fabrice; Elmi, Omid; Sneeuw, Nico; Kitambo, Benjamin; Tshimanga, Raphael M.; Paris, Adrien; Calmant, Stéphane
    The Congo Basin is of global significance for biodiversity and the water and carbon cycles. However, its freshwater availability and distribution remain relatively unknown. Using satellite data, here we show that currently the Congo Basin’s Total Drainable Water Storage lies within a range of 476 km 3 to 502 km 3 , unevenly distributed throughout the region, with 63% being stored in the southernmost sub-basins, Kasaï (220-228 km 3 ) and Lualaba (109-169 km 3 ), while the northern sub-basins contribute only 173 ± 8 km 3 . We further estimate the hydraulic time constant for draining its entire water storage to be 4.3 ± 0.1 months, but, regionally, permanent wetlands and large lakes act as resistors resulting in greater time constants of up to 105 ± 3 months. Our estimate provides a robust basis to address the challenges of water demand for 120 million inhabitants, a population expected to double in a few decades.