06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7

Browse

Search Results

Now showing 1 - 10 of 18
  • Thumbnail Image
    ItemOpen Access
    Development of a model predictive controller for floating offshore wind turbines
    (2020) Nann, Samuel
    In this work, an Economic Model Predictive Controller for a floating offshore wind turbine is presented. The classical Model Predictive Control for floating offshore wind turbines provides promising results. In addition, research on onshore wind turbines revealed the potential of the economic control method, which can improve the closed-loop behavior and simplify the control design in comparison to the classical version of this control method. The aim of this work is, to develop a novel Economic Model Predictive Controller for a floating offshore wind turbine based on these two research results. A simplified low order model of a floating offshore wind turbine serves as a basis for the controller design. Including the disturbance preview and constraints, the controller computes optimal trajectories for the blade pitch and the generator torque. To apply the control technique to a floating offshore wind turbine two things have to be done: Firstly, the cost function is designed, to fulfill the main objectives of, maximizing the generated power and alleviating the structural fatigues. Secondly, the constraints are integrated into the control problem. After selecting a suitable solver, the controller is discretized and scaled, thus a proper implementation and smooth operation is possible. Afterwards, the successful functioning of the algorithm, a multi-objective optimization is done, to find appropriate weights to adjust the cost function for the required objectives. Finally, the developed controller is tested with realistic wind and wave disturbances. A significant reduction of the standard deviation of the generated power can be shown, while maintaining real time capability. Furthermore, the structural fatigues of the tower and the platform are decreased.
  • Thumbnail Image
    ItemOpen Access
    Monitoring of the production process of graded concrete component using terrestrial laser scanning
    (2021) Yang, Yihui; Balangé, Laura; Gericke, Oliver; Schmeer, Daniel; Zhang, Li; Sobek, Werner; Schwieger, Volker
  • Thumbnail Image
    ItemOpen Access
    Optimization of the groundwater remediation process using a coupled genetic algorithm-finite difference method
    (2021) Seyedpour, Seyed Morteza; Valizadeh, Iman; Kirmizakis, Panagiotis; Doherty, Rory; Ricken, Tim
    In situ chemical oxidation using permanganate as an oxidant is a remediation technique often used to treat contaminated groundwater. In this paper, groundwater flow with a full hydraulic conductivity tensor and remediation process through in situ chemical oxidation are simulated. The numerical approach was verified with a physical sandbox experiment and analytical solution for 2D advection-diffusion with a first-order decay rate constant. The numerical results were in good agreement with the results of physical sandbox model and the analytical solution. The developed model was applied to two different studies, using multi-objective genetic algorithm to optimise remediation design. In order to reach the optimised design, three objectives considering three constraints were defined. The time to reach the desired concentration and remediation cost regarding the number of required oxidant sources in the optimised design was less than any arbitrary design.
  • Thumbnail Image
    ItemOpen Access
    Control co-design optimization of floating offshore wind turbines with tuned liquid multi-column dampers
    (2024) Yu, Wei; Zhou, Sheng Tao; Lemmer, Frank; Cheng, Po Wen
    The technical progress in the development and industrialization of floating offshore wind turbines (FOWTs) over the past decade has been significant. Yet, the higher levelized cost of energy (LCOE) of FOWTs compared to onshore wind turbines is still limiting the market share. One of the reasons for this is the larger motions and loads caused by the rough environmental excitations. Many prototype projects tend to employ more conservative substructure designs to meet the requirements for motion dynamics and structural safety. Another challenge lies in the multidisciplinary nature of a FOWT system, which consists of several strongly coupled subsystems. If these subsystems cannot work in synergy, the overall system performance may not be optimized. Previous research has shown that a well-designed blade pitch controller is able to reduce the motions and structural loads of FOWTs. Nevertheless, due to the negative aerodynamic damping effect, improvement in the performance by tuning the controller is limited. One of the solutions is adding tuned liquid multi-column dampers (TLMCDs), meaning that there is a structural solution to mitigate this limiting factor for the controller performance. It has been found that the additional damping, provided by TLMCDs, is able to improve the platform pitch stability, which allows a larger blade pitch controller bandwidth and thus a better dynamic response. However, if a TLMCD is not designed with the whole FOWT system dynamics taken into account, it may even deteriorate the overall performance. Essentially, an integrated optimization of these subsystems is needed. For this paper, we develop a control co-design optimization framework for FOWTs installed with TLMCDs. Using the multi-objective optimizer non-dominated sorting genetic algorithm II (NSGA-II), the objective is to optimize the platform, the blade pitch controller, and the TLMCD simultaneously. Five free variables characterizing these subsystems are selected, and the objective function includes the FOWT's volume of displaced water (displacement) and several motion and load indicators. Instead of searching for a unique optimal design, an optimal Pareto surface of the defined objectives is determined. It has been found that the optimization is able to improve the dynamic performance of the FOWT, which is quantified by motions and loads, when the displacement remains similar. On the other hand, if motions and loads are constant, the displacement of the FOWT can be reduced, which is an important indication of lower manufacturing, transportation, and installation costs. In conclusion, this work demonstrates the potential of advanced technologies such as TLMCDs to advance FOWTs for commercial competitiveness.
  • Thumbnail Image
    ItemOpen Access
    Quantification of amplitude modulation of wind turbine emissions from acoustic and ground motion recordings
    (2023) Blumendeller, Esther; Gaßner, Laura; Müller, Florian J. Y.; Pohl, Johannes; Hübner, Gundula; Ritter, Joachim; Cheng, Po Wen
  • Thumbnail Image
    ItemOpen Access
    Understanding the limitations of Sentinel-3 inland altimetry through validation over the Rhine River
    (2022) Schneider, Nicholas M.
    Satellite altimetry is developing into one of the most powerful measurement techniques for long-term water body monitoring thanks to its high spatial resolution and its increasing level of precision. Although the principle of satellite altimetry is very straightforward, the retrieval of correct water levels remains rather difficult due to various factors. Waveform retracking is an approach to optimize the initially determined range between the satellite and the water body on Earth by exploiting the information within the power-signal of the returned radar pulse to the altimeter. Several so-called retrackers have been designed to this end, yet remain one of the most open study areas in satellite altimetry due to their crucial role they play in water level retrieval. Moreover, geophysical properties of the stratified atmosphere and the target on Earth have an effect on the travel time of the transmitted radar pulse and can amount to severalmeters in range. In this study we provide an overall analysis of the performances of the retrackers dedicated to the Sentinel-3 mission and the applied geophysical corrections. For this matter, we focus on nine different locations within the Rhine River basin where locally gauged data is available to validate the Sentinel-3 level-2 products. Furthermore, we present a reverse retracking approach in the sense that we use the given in-situ data to determine the offset to each altimetry-derived measurement of every epoch. Under the assumption that these offsets are legitimate, they can be seen as an a-posteriori correction which we project onto the range and thus on a waveform level. Further analyses consist in the investigation of the relationship these a-posteriori corrections have to the waveform properties of the same epoch. Later, the question whether the a-posteriori corrections to the initial retracking gates are appropriate for the retrieval of correct water levels, drives us to assign a probability to each and every bin of the waveform. Following this idea, we design stochastic-based retrackers which determine the retracking gate for water level retrieval from the bin with the highest probability assigned to it. To distribute the probabilities across all bins of the waveform, we consider three empirical approaches that take both the waveform itself and its first derivative into account: Addition, multiplication and maximum of both signals. For all three of the new retrackers, we generate the water level timeseries over the aforementioned sites and validate them against in-situ data and the retrackers dedicated to the Sentinel-3 mission.
  • Thumbnail Image
    ItemOpen Access
    Dry fibre placement : the influence of process parameters on mechanical laminate properties and infusion behaviour
    (2021) Grisin, Benjamin; Carosella, Stefan; Middendorf, Peter
    Within the dry fibre placement (DFP) process, spread and pre-bindered carbon fibre rovings are automatically processed into dry textile preforms using 2-D and 3-D laying systems. The aim was to automate existing hand lay-up processes, reducing the complexity, increasing robustness, and facilitating the handling of the DFP technology. Process reliability, low waste rates, and flexible production are demonstrated. In this publication, the influences of the process parameters, 2 mm wide gaps and the percentage of 90° plies in the laminate, are investigated with regard to the mechanical properties, the permeability, and the infusion times in the preform z-direction (thickness). The effects on stiffness and strength are compared for several use cases. An approach to determine the infusion times as a function of the laminate thickness, the ply structure, and 2 mm wide gaps is demonstrated and analysed using vacuum-assisted process (VAP) infusion tests. The investigations are performed with carbon fibre tows (24 k), a reactive epoxy-based binder system, and a thermoset infusion resin system.
  • Thumbnail Image
    ItemOpen Access
    Numerical aspects of a two-way coupling for electro-mechanical interactions - a wind energy perspective
    (2022) Lüdecke, Fiona Dominique; Schmid, Martin; Rehe, Eva; Panneer Selvam, Sangamithra; Parspour, Nejila; Cheng, Po Wen
  • Thumbnail Image
    ItemOpen Access
    Radargrammetric DSM generation by semi-global matching and evaluation of penalty functions
    (2022) Wang, Jinghui; Gong, Ke; Balz, Timo; Haala, Norbert; Sörgel, Uwe; Zhang, Lu; Liao, Mingsheng
    Radargrammetry is a useful approach to generate Digital Surface Models (DSMs) and an alternative to InSAR techniques that are subject to temporal or atmospheric decorrelation. Stereo image matching in radargrammetry refers to the process of determining homologous points in two images. The performance of image matching influences the final quality of DSM used for spatial-temporal analysis of landscapes and terrain. In SAR image matching, local matching methods are commonly used but usually produce sparse and inaccurate homologous points adding ambiguity to final products; global or semi-global matching methods are seldom applied even though more accurate and dense homologous points can be yielded. To fill this gap, we propose a hierarchical semi-global matching (SGM) pipeline to reconstruct DSMs in forested and mountainous regions using stereo TerraSAR-X images. In addition, three penalty functions were implemented in the pipeline and evaluated for effectiveness. To make accuracy and efficiency comparisons between our SGM dense matching method and the local matching method, the normalized cross-correlation (NCC) local matching method was also applied to generate DSMs using the same test data. The accuracy of radargrammetric DSMs was validated against an airborne photogrammetric reference DSM and compared with the accuracy of NASA’s 30 m SRTM DEM. The results show the SGM pipeline produces DSMs with height accuracy and computing efficiency that exceeds the SRTM DEM and NCC-derived DSMs. The penalty function adopting the Canny edge detector yields a higher vertical precision than the other two evaluated penalty functions. SGM is a powerful and efficient tool to produce high-quality DSMs using stereo Spaceborne SAR images.