06 Fakultät Luft- und Raumfahrttechnik und Geodäsie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7
Browse
10 results
Search Results
Item Open Access Entwicklung laserspektroskopischer Methoden zur Analyse der Verdunstungseigenschaften von Brennstofftropfen(Stuttgart : Deutsches Zentrum für Luft- und Raumfahrt, Institut für Verbrennungstechnik, 2021) Werner, Stefanie; Riedel, Uwe (Prof. Dr. rer. nat.)Die steigenden Emissionen des klimaschädlichen Treibhausgases CO2 durch die Verbrennung von fossilen, endlichen Energieträgern müssen möglichst schnell und nachhaltig reduziert werden. Ein vielversprechender Lösungsansatz zur Reduzierung der Schadstoffemissionen bei der Verbrennung liegt in dem Einsatz von alternativen und erneuerbaren Brennstoffen. Als Energieträger bieten sich auf Grund ihrer hohen Energiedichte vor allem flüssige Brennstoffe an. Diese werden typischerweise durch Druckzerstäubung in die Brennkammer eingebracht, verdunstet und dann mit dem Oxidationsmittel vermischt und verbrannt. Die Verdunstung der kleinen Brennstofftropfen des sogenannten Sprays ist von entscheidender Bedeutung für den Gesamtverbrennungsprozess in Verbrennungsmotoren und Gasturbinen. Im Allgemeinen bestimmt die Verdunstungsrate die Verbrennungsrate. Daher sind Modelle notwendig, die eine genaue Vorhersage der Brennstoffverdunstung ermöglichen. Zur Validierung dieser Modelle werden quantitative Messungen unter genau definierten Randbedingungen benötigt. Da die Prozesse in technischen Brennkammern sehr komplex sind, werden Experimente zur Tropfenverdunstung häufig mit linearen, monodispersen Tropfenketten durchgeführt, um die Kopplung zwischen den verschiedenen Effekten zu minimieren. Durch die geringe Größe der Tropfen (typischerweise wenige hundert Mikrometer oder weniger), erfordert die experimentelle Untersuchung eine hohe räumliche Auflösung. In dieser Arbeit wurden quantitative, laseroptische Messtechniken mit hoher räumlicher Auflösung zur experimentellen Untersuchung der Tropfenverdunstung an monodispersen Tropfenketten entwickelt. Mit den Messtechniken wurden Validierungsdaten für die Verdunstungseigenschaften von verschiedenen Brennstoffen bestimmt. Konzentrationsmessungen von verdunsteten Kohlenwasserstoffen wurden unter Verwendung von Infrarot-Laserabsorptionsspektroskopie und laserinduzierter Fluoreszenzspektroskopie (LIF) durchgeführt. Tropfenketten wurden mit einem Tropfenkettengenerator erzeugt, welcher vertikal in einem Strömungskanal installiert wurde. Die untersuchten Brennstoffe waren Cyclohexan, iso-Octan, n-Heptan, n-Pentan, 1-Butanol und Anisol. Der Strömungskanal wurde mit einer laminaren Luftströmung bei verschiedenen Temperaturen (313 K - 430 K) durchströmt. Da die untersuchten Tropfen einen Durchmesser in der Größenordnung von 120 bis 160 µm hatten und die Konzentrationsgradienten nahe der Tropfenoberfläche groß waren, war eine hohe räumliche Auflösung der Messtechniken erforderlich. Die Absorptionsmessungen wurden mit der Infrarotstrahlung eines HeNe-Lasers bei λ = 3,39 µm durchgeführt, um die CH-Streckschwingung der Kohlenwasserstoffe anzuregen. Die für die Quantifizierung der Brennstoffkonzentrationen benötigten Absorptionsquerschnitte wurden in einer beheizten Gaszelle für Temperaturen von 300 K - 773 K bestimmt. Die räumliche Auflösung im Strömungskanal betrug < 50 µm über eine Länge von 2 mm (Halbwertsbreite). Durch die Zylindersymmetrie und gute Stabilität der Tropfenketten konnten zeitliche Mittelungs- und Tomografieverfahren angewandt werden. Hierdurch konnten radiale Konzentrationsprofile an mehreren Positionen im Strömungskanal erhalten werden. Aus dem Anstieg der Dampfkonzentration an verschiedenen Messpositionen konnte die Verdunstungsrate bestimmt werden. Die Verdunstungsraten wurden in Abhängigkeit von der Mantelstromtemperatur (313 K - 430 K), der Tropfengeschwindigkeit (8 m/s - 23 m/s), der Tropfenerzeugungsfrequenz (12 kHz - 75 kHz) und dem Tropfenabstand (300 µm - 685 µm) gemessen. Im untersuchten Temperaturbereich steigt die Verdunstungsrate des Brennstoffs linear mit der Temperatur an. Die Reihenfolge der Brennstoffe in Bezug auf die Verdunstungsrate entspricht den Siedepunkten der einzelnen Brennstoffe. Da technische Brennstoffe häufig eine Mischung mehrerer Komponenten sind, ist die Untersuchung von Brennstoffgemischen von großem Interesse. Daher wurde ein Messverfahren entwickelt, um binäre Gemische zu untersuchen. Das Verfahren wurde verwendet, um eine Mischung aus Cyclohexan und Anisol zu untersuchen. Zwei Messtechniken - laserinduzierte Fluoreszenz (LIF) und Infrarot Absorptionsspektroskopie - wurden verwendet, um beide Spezies zu messen. Um λ = 3,39 µm ist der Absorptionsquerschnitt von Cyclohexan um etwa den Faktor 8 größer als von Anisol. Im untersuchten Fall war die Konzentration aufgrund des höheren Dampfdrucks ebenfalls deutlich größer. Daher konnte das Infrarot-Absorptionssignal praktisch ausschließlich Cyclohexan zugeordnet werden. Anisol hat bei Anregung bei λ = 266 nm eine sehr gute Fluoreszenzquantenausbeute, während Cyclohexan keine Fluoreszenz zeigt. LIF ermöglicht daher die Quantifizierung von Anisol (oder anderen Aromaten) ohne Interferenz durch Kohlenwasserstoffe. Es wurde ein Messverfahren entwickelt, welches Halationseffekte vermeidet, die typischerweise in planaren LIF-Experimenten an Tropfenketten auftreten. Kalibrationsmessungen, die im gleichen Strömungskanal durchgeführt wurden, ermöglichten die Quantifizierung der verdunsteten Anisolkonzentrationen. Die räumliche Auflösung betrug 80 µm. Ähnlich wie bei den Einzelkomponentenmessungen wurden Verdunstungsraten bestimmt. Wie aufgrund des niedrigeren Dampfdrucks zu erwarten, ist die Verdunstungsrate von Anisol niedriger als die von Cyclohexan. Die Verdunstungsrate von Cyclohexan in der binären Mischung stimmt gut mit den Einzelkomponentenmessungen überein. Das entwickelte Messverfahren ist sehr vielversprechend für weitere Untersuchungen an Mehrkomponentenmischungen. In dieser Arbeit konnte damit erstmals mit hoher räumlicher Auflösung die Verdunstung von Brennstoffkomponenten mittels Absorptionsspektroskopie in der Nähe von Brennstofftropfen untersucht werden. Zusätzlich wurden in Kombination mit laserinduzierter Fluoreszenzspektroskopie Messungen an binären Mischungen durchgeführt. Damit steht ein wertvoller Datensatz zur Validierung von numerischen Simulationen zur Verfügung.Item Open Access Messungen im Bereich eines Windparks mit Fokus auf tief- und niederfrequente Schallemissionen und -immissionen(2022) Blumendeller, Esther; Gaßner, Laura; Müller, Florian; Wigger, Maayen; Berlinger, Philipp; Cheng, Po WenDie Nutzung von Windenergie wird einen entscheidenden Anteil am erneuerbaren Energiemix der Zukunft haben. Während der Stromgewinnung geben Windenergieanlagen (WEA) Schall und Erschütterungen (seismische Wellen) in die Umgebung ab, vor allem im tieffrequenten Bereich. Im Zuge des interdisziplinären Verbundprojektes Inter-Wind werden akustische Messungen zur Unterstützung psychologischer Fragebögen, kombiniert mit seismischen und meteorologischen Messungen an Windparks auf der Schwäbischen Alb durchgeführt. Ziel des Projektes ist es, die Gründe für Belästigung der Anwohner in Zusammenhang mit den Immissionen der WEA zu verstehen. Hierbei liegt der Fokus auf dem tieffrequenten (20-200 Hz) und niederfrequenten (1-20 Hz) Bereich. Akustische und seismische Messungen wurden an einem Windpark auf der Schwäbischen Alb, mit drei WEA des Typs GE 2.75-120 durchgeführt. Parallel dazu konnten Anwohner Belästigungszeiträume über eine Geräuschmelde-App dokumentieren. In diesem Beitrag wird die Umsetzung einer interdisziplinären Messkampagne im Bereich des Tegelberg Windparks und eines Wohngebäudes in Tallage in ca. 1 km Entfernung zum Windpark beschrieben. Schließlich werden erste Ergebnisse der akustischen Messungen und interdisziplinären Untersuchung vorgestellt und diskutiert.Item Open Access Passively mode-locked Tm-lasers for all-fiber high-energy nonlinear chirped pulse amplification(2023) Graf, Florian; Dekorsy, Thomas (Prof. Dr. rer. nat.)Item Open Access Science planning for the DESTINY+ Dust Analyzer : leveraging the potential of a space exploration instrument(2024) Sommer, Maximilian; Srama, Ralf (Apl. Prof. Dr.-Ing.)The DESTINY+ Dust Analyzer (DDA) is a highly sophisticated planetary science instrument to provide cutting-edge in-situ characterization of individual cosmic dust grains, with respect to their composition, as well as their physical and dynamical properties. As such, it constitutes a critical component of the upcoming JAXA mission DESTINY+, which is scheduled to launch in 2025. After a three-year cruise phase, the spacecraft will perform a flyby of the target asteroid 3200 Phaethon, with the goal of observing the enigmatic Geminids parent body with two camera instruments, and sampling particles released from its surface with the DDA. Until that flyby, DESTINY+ will execute a highly diverse, ion-engine-driven flight plan that allows DDA to extensively study the dust environments of the Earth, Moon, and interplanetary space - a breadth of science opportunities that is unique to this mission and instrument. This dissertation provides a comprehensive study of the dust types and phenomena possibly encountered by DDA during its journey to Phaethon and applies the principles and methods of science planning to prepare for the operational phase of the mission. The work synthesizes technical considerations and scientific analyses of relevant cosmic dust populations, aiming to optimize DDA’s scientific potential. Detailed examinations of spacecraft and instrument factors, such as the dynamic spacecraft attitude during the near-Earth phase or the instrument’s two-axis pointing mechanism, lay the groundwork for the scientific planning. The thorough analysis of known (and lesser known) dust populations in the inner solar system and of previous relevant measurements by other dust instruments form the core of the study. Finally, the findings are consolidated into a draft science activity plan for the entire mission, as well as exemplary pointing timelines to be executed by the instrument for optimal scientific return. The latter is accomplished with the DOPE tool, which aids in intuitive and efficient planning of DDA observations, having been developed in the scope of this project. The presented work builds the foundation for the scientific operations of DDA, setting it up for a successful and scientifically impactful mission. The findings of this study also provide a valuable perspective for other ventures of in-situ dust astronomy to the inner solar system and contribute to the field of cosmic dust as a whole.Item Open Access Crop water productivity mapping and benchmarking using remote sensing and Google Earth Engine cloud computing(2022) Ghorbanpour, Ali Karbalaye; Kisekka, Isaya; Afshar, Abbas; Hessels, Tim; Taraghi, Mahdi; Hessari, Behzad; Tourian, Mohammad J.; Duan, ZhengScarce water resources present a major hindrance to ensuring food security. Crop water productivity (WP), embraced as one of the Sustainable Development Goals (SDGs), is playing an integral role in the performance-based evaluation of agricultural systems and securing sustainable food production. This study aims at developing a cloud-based model within the Google Earth Engine (GEE) based on Landsat -7 and -8 satellite imagery to facilitate WP mapping at regional scales (30-m resolution) and analyzing the state of the water use efficiency and productivity of the agricultural sector as a means of benchmarking its WP and defining local gaps and targets at spatiotemporal scales. The model was tested in three major agricultural districts in the Lake Urmia Basin (LUB) with respect to five crop types, including irrigated wheat, rainfed wheat, apples, grapes, alfalfa, and sugar beets as the major grown crops. The actual evapotranspiration (ET) was estimated using geeSEBAL based on the Surface Energy Balance Algorithm for Land (SEBAL) methodology, while for crop yield estimations Monteith’s Light Use Efficiency model (LUE) was employed. The results indicate that the WP in the LUB is below its optimum targets, revealing that there is a significant degree of work necessary to ameliorate the WP in the LUB. The WP varies between 0.49-0.55 (kg/m3) for irrigated wheat, 0.27-0.34 for rainfed wheat, 1.7-2.2 for apples, 1.2-1.7 for grapes, 5.5-6.2 for sugar beets, and 0.67-1.08 for alfalfa, which could be potentially increased up to 80%, 150%, 76%, 83%, 55%, and 48%, respectively. The spatial variation of the WP and crop yield makes it feasible to detect the areas with the best and poorest on-farm practices, thereby facilitating the better targeting of resources to bridge the WP gap through water management practices. This study provides important insights into the status and potential of WP with possible worldwide applications at both farm and government levels for policymakers, practitioners, and growers to adopt effective policy guidelines and improve on-farm practices.Item Open Access Understanding the limitations of Sentinel-3 inland altimetry through validation over the Rhine River(2022) Schneider, Nicholas M.Satellite altimetry is developing into one of the most powerful measurement techniques for long-term water body monitoring thanks to its high spatial resolution and its increasing level of precision. Although the principle of satellite altimetry is very straightforward, the retrieval of correct water levels remains rather difficult due to various factors. Waveform retracking is an approach to optimize the initially determined range between the satellite and the water body on Earth by exploiting the information within the power-signal of the returned radar pulse to the altimeter. Several so-called retrackers have been designed to this end, yet remain one of the most open study areas in satellite altimetry due to their crucial role they play in water level retrieval. Moreover, geophysical properties of the stratified atmosphere and the target on Earth have an effect on the travel time of the transmitted radar pulse and can amount to severalmeters in range. In this study we provide an overall analysis of the performances of the retrackers dedicated to the Sentinel-3 mission and the applied geophysical corrections. For this matter, we focus on nine different locations within the Rhine River basin where locally gauged data is available to validate the Sentinel-3 level-2 products. Furthermore, we present a reverse retracking approach in the sense that we use the given in-situ data to determine the offset to each altimetry-derived measurement of every epoch. Under the assumption that these offsets are legitimate, they can be seen as an a-posteriori correction which we project onto the range and thus on a waveform level. Further analyses consist in the investigation of the relationship these a-posteriori corrections have to the waveform properties of the same epoch. Later, the question whether the a-posteriori corrections to the initial retracking gates are appropriate for the retrieval of correct water levels, drives us to assign a probability to each and every bin of the waveform. Following this idea, we design stochastic-based retrackers which determine the retracking gate for water level retrieval from the bin with the highest probability assigned to it. To distribute the probabilities across all bins of the waveform, we consider three empirical approaches that take both the waveform itself and its first derivative into account: Addition, multiplication and maximum of both signals. For all three of the new retrackers, we generate the water level timeseries over the aforementioned sites and validate them against in-situ data and the retrackers dedicated to the Sentinel-3 mission.Item Open Access Experiments on laminar separation bubbles under inflow conditions of atmospheric turbulence(2024) Greiner, Michael; Krämer, Ewald (Prof. Dr.-Ing.)Natural laminar flow (NLF) airfoils have been largely responsible for the performance advances of today's general aviation aircraft and wind turbines. In the design of these airfoils, atmospheric turbulence has received little attention, although specific atmospheric conditions are often present during their operation. One reason for this is that the effect of atmospheric turbulence on the boundary layer, and in particular on laminar separation bubbles (LSB), has only been possible to be estimated from experience. This study addresses this issue based on the example of sailplanes. In the first part of this work, the inflow conditions during typical cross-country flights of sailplanes are studied. Avoiding laminar separation bubbles at high lift coefficients is one of the challenges in the design of NLF airfoils. Therefore, the focus is on circling in thermals and thus on the convective boundary layer of the atmosphere. Continuous measurements of free-stream turbulent velocity fluctuations have been made during cross-country flights, with resolutions well into the dissipation range of the turbulence spectrum. The second part studies the effect of free-stream turbulence on mid-chord laminar separation bubbles that may appear on the upper surface of low speed NLF airfoils typically used in general aviation or wind turbines. For this purpose, the relevant conditions found in the first part were transferred to the Laminar Wind Tunnel (Re = 880,000, Tu = 0.01%-0.38%) for detailed experimental investigation. A distinction is made between small-scale turbulence, which acts via the classical vortex receptivity, and large-scale turbulence, which corresponds to inflow angle fluctuations and acts on the evolution of the boundary layer via the transient change in stability properties. The insights gained in flight permit the modelling of the free stream turbulence to be expected in flight through the convective atmosphere. The results of the wind tunnel experiments allow to better regard these turbulent conditions during the design of NLF airfoils.Item Open Access Integration of geometric computer vision, endoscopy and computed tomography for 3D modeling of gyroscopic instruments(2022) Zhan, Kun; Fritsch, Dieter (Prof. Dr.-Ing. habil. Prof. h. c.)3D digitization is of vital importance for cultural heritage assets for modern civilizations regarding safekeeping and promotion. Generally, cultural heritage indicates old buildings, ancient status or unearthed relics for the public. However, the objectives to be digitized also include tools and instruments that have been widely applied in the past decades, even though they have been replaced with more advanced technologies. We call these technical instruments and artifacts Tech Heritage (TH). Gyroscopes are one group of such fascinating instruments with a history dating back to 200 years. The main characteristics of gyroscopes regarding 3D digitization are (1) having highly complex structure; (2) consisting of different materials; (3) not only the surfaces but also the internal structures are important. All these features decide that no single methodology could meet the demand for their 3D digitization. To fulfill the requirements of gyroscopes in our research, photogrammetry, endoscopy and Computed Tomography (CT) are introduced for complete 3D digitization. With colored point clouds or textured meshes as result, photogrammetry is mainly for the global surface reconstruction of the object. For some cavities, holes or other parts that the regular camera hardly has access to, endoscopy is applied for a local 3D reconstruction, as supplement. As internal structures are also important, X-Ray computed tomography is utilized for volumetric 3D digitization. These three 3D sensor data should then be integrated for a complete 3D model. Additionally, the registration method should be adaptive to the data characteristics such as the geometry, point cloud density, etc. In this thesis, 3D reconstructions with each method as well as the data fusion are investigated. 1. Firstly, we study the stability and reliability of camera calibration before 3D reconstruction with photogrammetry and endoscopy. As the standard pre-calibration solution, Zhang's method suffers from the instability due to the correlations between the calibration parameters. To reduce this effect, the image configuration should be well considered with adequate oblique angles, distance difference as well as roll angels for a convergent image block. In our research, a quantitative analysis is implemented by a statistical approach using large bundles of images and get calibrations from randomly chosen image subsets. In addition, the recovered expected values of parameters are utilized as ground truth to scrutinize the single influencing factors of the imaging configuration. 2. Secondly, the 3D reconstruction processes are investigated with practical implementations. For the endoscope 3D reconstruction, the data acquisition process is the first challenge resulting from the image blur which may caused by the hand shaking as well as the small overlap. The imaging assistant setup and a mixture of image and video strategy are the methods adopted in our research as the solution. With the accurate calibration information and the improved image quality and configuration, we optimize the entire process through optimization of the Structure-from-Motion (SfM) method. As for CT 3D reconstruction, a stack of X-ray images, carrying the information of attenuation, is to be collected from different perspectives of the object. All reconstructed slices are integrated into an uniform 3D coordinate system to construct the complete 3D volumetric representation. 3. Thirdly, data registration methods are proposed regarding different data features. To register these two 3D data with few overlaps such as photogrammetry and endoscopic point clouds, a Gauss-Helmert model with manually picked control points is applied for transformation estimation with precision assessments. To take advantage of the pair-wise point cloud registration research, CT point cloud conversion and surface extraction are implemented from the volumetric CT data. As for the CT and photogrammetry data registration, it could be divided into two cases regarding the completeness of the CT surface representation. If the surface material is completely indicated in the CT data, we could directly project the color information from photogrammetric images to the CT surface after both datasets are transformed into the same coordinate system. In this way, we combine the high precision of CT data with the rich texture information. While low density surface material causes an incomplete representation of the CT surface, the transformation is estimated via the primitive based virtual control points from both surface data. With the determined transformation, the photogrammetric model could then be integrated with the CT model for a complete 3D representation. 4. Finally, in terms of 3D model expression, point clouds are of too big data volume if precision is required and have limited interaction possibilities. Therefore, the point clouds need to be vectorized into Constructive Solid Geometry (CSG) models to enable easier human-computer interaction. This process could be precisely done via manual work with sufficient caution via a Random Sample Consensus (RANSAC)-based geometric fitting process or even with a deep learning strategy via an end-to-end trained framework. The vectorized 3D model could be applied in AR/VR related applications to make full use of the work of 3D digitization. For the first time, three totally different sensors are studied for a fused 3D reconstruction in this research. Among the workflow, the practical application of endoscopy is fully investigated. The integration methods are adaptively designed according to the characteristics of each sensor as well as of the reconstructed object. It provides more possibilities and ideas for the digital tasks of different types of cultural heritage.Item Open Access Forecasting next year's global land water storage using GRACE data(2024) Li, Fupeng; Kusche, Jürgen; Sneeuw, Nico; Siebert, Stefan; Gerdener, Helena; Wang, Zhengtao; Chao, Nengfang; Chen, Gang; Tian, KunjunExisting approaches for predicting total water storage (TWS) rely on land surface or hydrological models using meteorological forcing data. Yet, such models are more adept at predicting specific water compartments, such as soil moisture, rather than others, which consequently impedes accurately forecasting of TWS. Here we show that machine learning can be used to uncover relations between nonseasonal terms of Gravity Recovery and Climate Experiment (GRACE) derived total water storage and the preceding hydrometeorological drivers, and these relations can subsequently be used to predict water storage up to 12 months ahead, and even exceptional droughts on the basis of near real‐time observational forcing data. Validation by actual GRACE observations suggests that the method developed here has the capability to forecast trends in global land water storage for the following year. If applied in early warning systems, these predictions would better inform decision‐makers to improve current drought and water resource management.Item Open Access Development of a passively Q-switched microchip laser operating at 914 nm for automotive lidar applications(2022) Nägele, Marco; Dekorsy, Thomas (Prof. Dr. rer. nat.)Die meisten Festkörperlaser besitzen Emissionswellenlängen oberhalb eines Mikrometers und können deshalb nicht für moderne Lidarsysteme in Kombination mit günstiger und weit etablierter siliziumbasierten Detektortechnologie verwendet werden. Ziel dieser Arbeit ist daher die Untersuchung und Realisierung eines passiv gütegeschalteten Nd3+:YVO4 Lasers bei einer Wellenlänge von 914nm für die Anwendung in einem automobilen Lidar Sensor. Zur Untersuchung der für die Lidaranwendung relevanten Laserparameter werden insgesamt drei experimentelle Resonatorkonfigurationen verwendet. Die Konfigurationen sind dabei so gewählt, dass die Laserparameter möglichst entkoppelt vom Gesamtsystem analysiert werden können. Experimentelle Untersuchungen zeigen, dass der quasikontinuierlich gepumpte Nd3+:YVO4 Laser Pulsdauern im einstelligen Nanosekundenbereich und Pulsenergien von knapp 40 μJ erreichen kann. Zudem lässt sich für eine mögliche Lidaranwendung die Repetitionsrate bis ungefähr 60 kHz über die verwendete Pumpleistung skalieren. Der Vergleich mit der Theorie basierend auf Ratengleichungen zeigt eine gute Übereinstimmung zum Experiment, woraus sich das zukünftige Potential des Lasers für mögliche Anwendungen abschätzen lässt. Über alle Untersuchungen hinweg konnte eine sehr gute Strahlqualität beobachtet werden, was in der Lidaranwendung ein hervorragendes Auflösevermögen verspricht. Neben der Betrachtung verschiedener Systemzusammenhänge mittels experimenteller Konfigurationen wird ein kompakter, monolithischer, passiv gütegeschalteter Demonstratoraufbau im Einzelpulsbetrieb bei einer Wiederholrate von 200 Hz präsentiert. Hierbei kommt als Pumplaser ein 808nm Breitstreifen-Diodenlaser zum Einsatz, welcher verglichen mit einem fasergekoppelten Laserdiodenmodul nicht nur ein deutlich kompakteres Gesamtsystem verspricht, sondern ebenfalls eine schmalere Linienbreite besitzt. Folglich kann das Gesamtsystem allein durch Anpassung des Pumplaserstroms und ohne aktive Temperaturstabilisierung in einem Temperaturbereich von 20-50 °C stabil betrieben werden. Zudem liefert der kurze Resonator des monolithischen Laserkristalls nicht nur kurze Pulsdauern, sondern ermöglicht ebenfalls den Betrieb auf einer einzelnen longitudinalen Mode und folglich spektrale Emissionsbandbreiten von wenigen Pikometern. Hierdurch ergibt sich für Langzeitmessungen über 60 Minuten eine hervorragende Stabilität der spektralen Eigenschaften, der Pulsenergie und der Pulsdauer.