06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7

Browse

Search Results

Now showing 1 - 10 of 24
  • Thumbnail Image
    ItemOpen Access
    Entwicklung laserspektroskopischer Methoden zur Analyse der Verdunstungseigenschaften von Brennstofftropfen
    (Stuttgart : Deutsches Zentrum für Luft- und Raumfahrt, Institut für Verbrennungstechnik, 2021) Werner, Stefanie; Riedel, Uwe (Prof. Dr. rer. nat.)
    Die steigenden Emissionen des klimaschädlichen Treibhausgases CO2 durch die Verbrennung von fossilen, endlichen Energieträgern müssen möglichst schnell und nachhaltig reduziert werden. Ein vielversprechender Lösungsansatz zur Reduzierung der Schadstoffemissionen bei der Verbrennung liegt in dem Einsatz von alternativen und erneuerbaren Brennstoffen. Als Energieträger bieten sich auf Grund ihrer hohen Energiedichte vor allem flüssige Brennstoffe an. Diese werden typischerweise durch Druckzerstäubung in die Brennkammer eingebracht, verdunstet und dann mit dem Oxidationsmittel vermischt und verbrannt. Die Verdunstung der kleinen Brennstofftropfen des sogenannten Sprays ist von entscheidender Bedeutung für den Gesamtverbrennungsprozess in Verbrennungsmotoren und Gasturbinen. Im Allgemeinen bestimmt die Verdunstungsrate die Verbrennungsrate. Daher sind Modelle notwendig, die eine genaue Vorhersage der Brennstoffverdunstung ermöglichen. Zur Validierung dieser Modelle werden quantitative Messungen unter genau definierten Randbedingungen benötigt. Da die Prozesse in technischen Brennkammern sehr komplex sind, werden Experimente zur Tropfenverdunstung häufig mit linearen, monodispersen Tropfenketten durchgeführt, um die Kopplung zwischen den verschiedenen Effekten zu minimieren. Durch die geringe Größe der Tropfen (typischerweise wenige hundert Mikrometer oder weniger), erfordert die experimentelle Untersuchung eine hohe räumliche Auflösung. In dieser Arbeit wurden quantitative, laseroptische Messtechniken mit hoher räumlicher Auflösung zur experimentellen Untersuchung der Tropfenverdunstung an monodispersen Tropfenketten entwickelt. Mit den Messtechniken wurden Validierungsdaten für die Verdunstungseigenschaften von verschiedenen Brennstoffen bestimmt. Konzentrationsmessungen von verdunsteten Kohlenwasserstoffen wurden unter Verwendung von Infrarot-Laserabsorptionsspektroskopie und laserinduzierter Fluoreszenzspektroskopie (LIF) durchgeführt. Tropfenketten wurden mit einem Tropfenkettengenerator erzeugt, welcher vertikal in einem Strömungskanal installiert wurde. Die untersuchten Brennstoffe waren Cyclohexan, iso-Octan, n-Heptan, n-Pentan, 1-Butanol und Anisol. Der Strömungskanal wurde mit einer laminaren Luftströmung bei verschiedenen Temperaturen (313 K - 430 K) durchströmt. Da die untersuchten Tropfen einen Durchmesser in der Größenordnung von 120 bis 160 µm hatten und die Konzentrationsgradienten nahe der Tropfenoberfläche groß waren, war eine hohe räumliche Auflösung der Messtechniken erforderlich. Die Absorptionsmessungen wurden mit der Infrarotstrahlung eines HeNe-Lasers bei λ = 3,39 µm durchgeführt, um die CH-Streckschwingung der Kohlenwasserstoffe anzuregen. Die für die Quantifizierung der Brennstoffkonzentrationen benötigten Absorptionsquerschnitte wurden in einer beheizten Gaszelle für Temperaturen von 300 K - 773 K bestimmt. Die räumliche Auflösung im Strömungskanal betrug < 50 µm über eine Länge von 2 mm (Halbwertsbreite). Durch die Zylindersymmetrie und gute Stabilität der Tropfenketten konnten zeitliche Mittelungs- und Tomografieverfahren angewandt werden. Hierdurch konnten radiale Konzentrationsprofile an mehreren Positionen im Strömungskanal erhalten werden. Aus dem Anstieg der Dampfkonzentration an verschiedenen Messpositionen konnte die Verdunstungsrate bestimmt werden. Die Verdunstungsraten wurden in Abhängigkeit von der Mantelstromtemperatur (313 K - 430 K), der Tropfengeschwindigkeit (8 m/s - 23 m/s), der Tropfenerzeugungsfrequenz (12 kHz - 75 kHz) und dem Tropfenabstand (300 µm - 685 µm) gemessen. Im untersuchten Temperaturbereich steigt die Verdunstungsrate des Brennstoffs linear mit der Temperatur an. Die Reihenfolge der Brennstoffe in Bezug auf die Verdunstungsrate entspricht den Siedepunkten der einzelnen Brennstoffe. Da technische Brennstoffe häufig eine Mischung mehrerer Komponenten sind, ist die Untersuchung von Brennstoffgemischen von großem Interesse. Daher wurde ein Messverfahren entwickelt, um binäre Gemische zu untersuchen. Das Verfahren wurde verwendet, um eine Mischung aus Cyclohexan und Anisol zu untersuchen. Zwei Messtechniken - laserinduzierte Fluoreszenz (LIF) und Infrarot Absorptionsspektroskopie - wurden verwendet, um beide Spezies zu messen. Um λ = 3,39 µm ist der Absorptionsquerschnitt von Cyclohexan um etwa den Faktor 8 größer als von Anisol. Im untersuchten Fall war die Konzentration aufgrund des höheren Dampfdrucks ebenfalls deutlich größer. Daher konnte das Infrarot-Absorptionssignal praktisch ausschließlich Cyclohexan zugeordnet werden. Anisol hat bei Anregung bei λ = 266 nm eine sehr gute Fluoreszenzquantenausbeute, während Cyclohexan keine Fluoreszenz zeigt. LIF ermöglicht daher die Quantifizierung von Anisol (oder anderen Aromaten) ohne Interferenz durch Kohlenwasserstoffe. Es wurde ein Messverfahren entwickelt, welches Halationseffekte vermeidet, die typischerweise in planaren LIF-Experimenten an Tropfenketten auftreten. Kalibrationsmessungen, die im gleichen Strömungskanal durchgeführt wurden, ermöglichten die Quantifizierung der verdunsteten Anisolkonzentrationen. Die räumliche Auflösung betrug 80 µm. Ähnlich wie bei den Einzelkomponentenmessungen wurden Verdunstungsraten bestimmt. Wie aufgrund des niedrigeren Dampfdrucks zu erwarten, ist die Verdunstungsrate von Anisol niedriger als die von Cyclohexan. Die Verdunstungsrate von Cyclohexan in der binären Mischung stimmt gut mit den Einzelkomponentenmessungen überein. Das entwickelte Messverfahren ist sehr vielversprechend für weitere Untersuchungen an Mehrkomponentenmischungen. In dieser Arbeit konnte damit erstmals mit hoher räumlicher Auflösung die Verdunstung von Brennstoffkomponenten mittels Absorptionsspektroskopie in der Nähe von Brennstofftropfen untersucht werden. Zusätzlich wurden in Kombination mit laserinduzierter Fluoreszenzspektroskopie Messungen an binären Mischungen durchgeführt. Damit steht ein wertvoller Datensatz zur Validierung von numerischen Simulationen zur Verfügung.
  • Thumbnail Image
    ItemOpen Access
    High-order methods for computational astrophysics
    (2015) Núñez-de la Rosa, Jonatan; Munz, Claus-Dieter (Prof. Dr.)
    In computational fluid dynamics, high-order numerical methods have gained quite popularity in the last years due to the need of high fidelity predictions in the simulations. High-order methods are suitable for unsteady flow problems and long-term simulations because they are more efficient when obtaining higher accuracy than low-order methods, and because of their outstanding dissipation and dispersion properties. In the present work, the development and application of three high-order numerical methods, namely, the conservative finite difference (FD) method, the finite volume (FV) method, and the discontinuous Galerkin spectral element method (DGSEM), is presented. These methods are used here for solving three equations systems arising in computational astrophysics on flat spacetimes, specifically, the ideal magnetohydrodynamics (MHD), relativistic hydrodynamics (SRHD) and relativistic magnetohydrodynamics (SRMHD). Our computational framework has been subject to the standard testbench in computational astrophysics. Numerical results of problems having smooth flows, and problems with shock-dominated flows, are also reported. Finite volume methods are numerical methods based on the weak solution of conservation laws in integral form. Unlike finite volume methods, where cell averages of the solution are evolved in time, in the conservative finite difference schemes only the solution at specific nodal points are considered. This difference offers a high efficiency of finite difference over finite volume methods in two and three dimensional high-order calculations because of the form of the utilized stencils in the reconstruction step. Recently, a lot of effort has been put into the development of efficient high-order accurate reconstruction procedures on structured and unstructured meshes. The most widely used procedure to achieve high-order spatial accuracy in finite volume and conservative finite difference methods is the WENO reconstruction. The basic idea of the WENO schemes is based on an adaptive reconstruction procedure to obtain a higher-order approximation on smooth regions while the scheme remains non-oscillatory near discontinuities. For this reason, the WENO formulation is particularly effective when solving conservation laws containing discontinuities. In this work, the FD and FV methods are extended to very high-order accuracy on regular Cartesian meshes by making use of the arbitrary high-order reconstruction WENO operator. The time discretization is carried out with a strong stability-preserving Runge-Kutta (SSPRK) method. The MHD, SRHD and SRMHD equations are then solved with these two methods for problems having strong shock configurations. The discontinuous Galerkin (DG) methods combine the ideas of the finite element (FE) and the finite volume methods. From the FE methods, the solution and test functions in the variational formulation of the conservation law are locally represented by polynomials, allowing to be discontinuous at element faces. In order to stabilize the scheme, from the FV methods are borrowed the ideas of using Riemann solvers, which permit to connect a given element with its direct neighboring ones. One special case in the family of DG methods is the DGSEM. In these methods, the domain is decomposed into quadrilateral/hexahedral elements, and the solution and the fluxes are represented by tensor-product basis functions (high-order Lagrangian interpolants). The integrals are approximated by quadrature, and the nodal points, where the solution is computed, are the Gauss-Legendre quadrature points. With these choices, the DG operator has a dimension-by-dimension splitting form, which yields more efficiency due to less operations and less memory consumption. In this work, the DGSEM has been also extended to the equations of computational astrophysics on flat spacetimes, but restricted only to the MHD and SRHD equations. Because discontinuous solutions form part of the nature of the hyperbolic conservation laws, shock capturing strategies have to be devised, especially for the discontinuous Galerkin method. For the DGSEM, a hybrid DG/FV shock capturing approach is used as the main building block for stabilization of the solution when shocks take place. The hybrid DGSEM/FV is constructed in such a way that, in regions of smooth flows, the DGSEM method is employed, and those parts of the flow having shocks, the DGSEM elements are interpreted as quadrilateral/hexahedral subdomains. In each of these subdomains, the nodal DG solution values are used to build a new local domain composed now of finite volume subcells, which are evolved with a robust finite volume method with third order WENO reconstruction. This new numerical framework for computational astrophysics based on the hybridization of high-order methods brings very promising results.
  • Thumbnail Image
    ItemOpen Access
    Simulating asteroid impacts and meteor events by high-power lasers : from the laboratory to spaceborne missions
    (2023) Ferus, Martin; Knížek, Antonín; Cassone, Giuseppe; Rimmer, Paul B.; Changela, Hitesh; Chatzitheodoridis, Elias; Uwarova, Inna; Žabka, Ján; Kabáth, Petr; Saija, Franz; Saeidfirozeh, Homa; Lenža, Libor; Krůs, Miroslav; Petera, Lukáš; Nejdl, Lukáš; Kubelík, Petr; Křivková, Anna; Černý, David; Divoký, Martin; Pisařík, Michael; Kohout, Tomáš; Palamakumbure, Lakshika; Drtinová, Barbora; Hlouchová, Klára; Schmidt, Nikola; Martins, Zita; Yáñez, Jorge; Civiš, Svatopoluk; Pořízka, Pavel; Mocek, Tomáš; Petri, Jona; Klinkner, Sabine
    Meteor plasmas and impact events are complex, dynamic natural phenomena. Simulating these processes in the laboratory is, however, a challenge. The technique of laser induced dielectric breakdown was first used for this purpose almost 50 years ago. Since then, laser-based experiments have helped to simulate high energy processes in the Tunguska and Chicxulub impact events, heavy bombardment on the early Earth, prebiotic chemical evolution, space weathering of celestial bodies and meteor plasma. This review summarizes the current level of knowledge and outlines possible paths of future development.
  • Thumbnail Image
    ItemOpen Access
    The effects of airfoil thickness on dynamic stall characteristics of high‐solidity vertical axis wind turbines
    (2021) Bangga, Galih; Hutani, Surya; Heramarwan, Henidya
    The flow physics of high solidity vertical axis wind turbines (VAWTs) is influenced by the dynamic stall effects. The present study is aimed at investigating the effects of airfoil thickness on the unsteady characteristics of high solidity VAWTs. Seven different national advisory committee for aeronautics (NACA) airfoils (0008, 0012, 0018, 0021, 0025, 0030, 0040) are investigated. A high fidelity computational fluid dynamics (CFD) approach is used to examine the load and flow characteristics in detail. Before the study is undertaken, the CFD simulation is validated with experimental data as well as large eddy simulation results with sound agreement. The investigation demonstrates that increasing the airfoil thickness is actually beneficial not only for suppressing the dynamic stall effects but also to improve the performance of high solidity turbines. Interestingly this is accompanied by a slight reduction in thrust component. The strength and radius of the dynamic stall vortex decrease with increasing airfoil thickness. The airfoil thickness strongly influences the pressure distributions during dynamic stall process, which is driven by the suction peak near the leading edge. The knowledge gained might be used by blade engineers for designing future turbines and for improving the accuracy of engineering models.
  • Thumbnail Image
    ItemOpen Access
    Development and application of PICLas for combined optic-/plume-simulation of ion-propulsion systems
    (2019) Binder, Tilman; Fasoulas, Stefanos (Prof. Dr.-Ing.)
    Electric propulsion systems are an efficient option for altitude/attitude control and orbit transfers of spacecraft. One example is the gridded ion thruster which ionizes the propellant and accelerates the ions of the generated plasma by a high-voltage grid system. This work deals with the numerical simulation of the plasma flow starting near the grid system in the ionization chamber and leaving the thruster with high velocity. These simulations give direct insight into the modeled, physical interrelationships and can be used to investigate questions arising in the industrial development process of ion propulsion systems. The required simulation method is challenging due to the high degree of flow rarefaction and the plasma state itself, including freely moving ions and electrons. Applicable simulation methods belong to a particle-based, gas-kinetic approach, such as Particle-In-Cell (PIC) for the simulation of electromagnetic interaction and the Direct Simulation Monte Carlo (DSMC) for inter-particle collisions. The effects resulting from the finite size of a real system can only be investigated by simulating the complete, three-dimensional thruster geometry which requires a large and complex simulation domain. Acceptable simulation times are realized by expanding and using the framework of the coupled PIC-DSMC code PICLas in combination with high performance computing systems.
  • Thumbnail Image
    ItemOpen Access
    Modeling and simulation of electronic excitation in oxygen-helium discharges and plasma-assisted combustion
    (2018) Kuntner, Nikolaj; Riedel, Uwe (Prof. Dr. rer. nat.)
    The present work concerns the generation of electronically excited oxidizers in non-thermal discharges in the context of plasma-assisted hydrogen and methane combustion at atmospheric pressures. These conditions are of practical relevance for the combustion technology. However, as the conversion of electrical power into particular, chosen chemical degrees of freedom is facilitated by low molecular interaction, the atmospheric parameter range is often neglected in the literature. This work provides the design and validation of accurate and efficient computational models for several experiments in this parameter range.
  • Thumbnail Image
    ItemOpen Access
    Untersuchungen zur Chemie-Turbulenz-Wechselwirkung an eingeschlossenen verdrallten Erdgas/Luft-Diffusionsflammen : laserspektroskopische Bestimmung der Temperatur- und Speziesverteilungen mit Einzelpulsanregung
    (2002) Keck, Olaf; Aigner, Manfred (Prof. Dr.-Ing.)
    Verdrallte Flammen spielen in der industriellen Verbrennung aufgrund der effektiven Mischung von Brennstoff und Oxidator eine besondere Bedeutung. Allerdings beschreiben heutige Standard –Algorithmen die komplexen Vorgänge innerhalb verdrallter Flammen nur unzureichend für eine detaillierte Simulation und müssen weiterhin verbessert und durch experimentelle Ergebnisse validiert werden. Gegenstand dieser Arbeit ist die detaillierte und quantitative Charakterisierung praxis-relevanter Erdgas/Luft-Diffusionsflammen (150kW) mit laserspektroskopischen Messmethoden. Die gemessenen Datensätze dienen einerseits dem verbesserten Verständnis der komplexen physikalischen und chemischen Abläufe in verdrallten Flammen und andererseits als Datenbasis für die Validierung von Verbrennungsmodellen. Untersuchungen mit planarer Laser-induzierter Fluoreszenz an OH und an NO, welches dem Erdgas als Brennstoffindikator hinzugefügt wurde, lieferten zusammen mit Chemilumineszenz-Aufnahmen wichtige Informationen über die Strukturen der Reaktionszonen, der Mischung und des allgemeinen Flammenverhaltens, die für die spätere Interpretation der Verbrennungsvorgänge von großer Bedeutung sind. Der Hauptteil der experimentellen Untersuchungen bestand aus Einzelpulsmessungen der spontanen Raman-Streuung, mit denen korrelierte Ergebnisse über die Temperatur, Konzentrationen der Hauptspezies und dem daraus abgeleiteten Mischungsbruch gewonnen werden konnten. Es wurden an drei Flammenkonfigurationen unterschiedlicher Drallzahl die Wahrscheinlichkeitsdichtefunktionen (PDFs) der Temperatur, des Mischungsbruches und der Speziesverteilung gemessen, aus denen neben den Mittelwerten und Fluktuationen auch Korrelationen zwischen den Messgrößen abgeleitet werden konnten. Diese Ergebnisse lieferten einen genauen Aufschluss über die Struktur und den thermochemischen Zustand der Flamme und deckten Effekte auf, die durch Mischprozesse, Chemie-Turbulenz-Wechselwirkung und Wärmeverluste hervorgerufen wurden.
  • Thumbnail Image
    ItemOpen Access
    Charakterisierung von Kohlendioxid-Plasmaströmungen zur Simulation von Marseintrittsmanövern
    (2017) Marynowski, Thomas; Fasoulas, Stefanos (Prof. Dr.-Ing.)
    Das Thema dieser Arbeit ist die Charakterisierung von CO2-Plasmaströmungen, die die Simulation von Eintrittsmanövern an Planeten ermöglichen. Die Planeten Venus und Mars besitzen eine von CO2 dominierte Atmosphäre und besonders unser direkter Nachbarplanet Mars steht momentan im Fokus aktueller explorativer Missionen. Für eine sicherere und umfangreichere Erkundung der Planeten sind effiziente Technologien erforderlich. Dabei spielen Hitzeschutzmaterialien (engl. Thermal Protection Systems, TPS) eine wichtige Rolle, denn sie ermöglichen erst die Eintrittsmanöver und machen einen erheblichen Masseanteil der Raumfahrzeuge aus. Durch Verbesserung und effizienteren Einsatz der Hitzeschutzmaterialien kann der Nutzlastanteil gesteigert und durch Erhöhung der Sicherheit die Erfolgschancen der Missionen verbessert werden. Das Testen und die Weiterentwicklung solcher Hitzeschutzmaterialien sind mit Hilfe des induktiven Plasmagenerators IPG4 am Plasmawindkanal PWK3 möglich. Die Voraussetzung für solche Tests ist die Kenntnis der wichtigsten Parameter des Freistrahls. Die Messung der Parameter wird mit zwei unterschiedlichen Gruppen von Messmethoden durchgeführt. Als Teil der nicht intrusiven Messmethoden und Schwerpunkt dieser Arbeit wird die laserspektroskopische Methode der Zwei-Photonen laserinduzierten Fluoreszenz (engl. Two-Photon Absorption Laser-Induced Fluorescence, TALIF) eingesetzt. Damit wird zum ersten Mal bei Eintrittsbedingungen in einem induktiv geheizten CO2-Plasma die Grundzustandsdichte von Sauerstoff, als eines der wichtigsten Dissoziationsprodukte einer CO2-Strömung, gemessen. Absolute Aussagen (Grundzustandsdichte, translatorische Temperatur und Geschwindigkeit) über den atomaren Sauerstoff werden durch Messungen an Xenon ermöglicht, das einen passenden Zweiphotonenübergang besitzt und so zur Kalibrierung benutzt werden kann. Zur Erweiterung der Charakterisierung werden auch weitere Messmethoden genutzt. Die optische Emissionsspektroskopie (OES) und ein Hochgeschwindigkeitskamerasystem (HSC) werden als weitere nicht intrusive Diagnostiken eingesetzt. OES ermöglicht die Identifizierung der vorkommenden Spezies sowie die Bestimmung von Vibrations-, Rotations- und elektronischen Anregungstemperaturen. Die Daten der Hochgeschwindigkeitsaufnahmen geben orts- und zeitaufgelöste Informationen über Emissionsverteilungen einzelner identifizierter Spezies in der Strömung, was durch den Einsatz von schmalbandigen Spektralfiltern erreicht wird. Darüber hinaus werden intrusive, also in die Strömung gebrachte, Sonden verwendet, um Totaldruck, Wärmestromdichte und massenspezifische Enthalpie zu messen. Die massenspezifische Enthalpie wird dabei auf zwei unterschiedliche Weisen ermittelt. Dazu wird einerseits eine spezielle Enthalpiesonde und andererseits ein indirekter semiempirischer Ansatz, der sich auf die Messung von Totaldruck und Wärmestromdichte sowie eine benötigte Konstante stützt, verwendet. Durch die Sondenmessung der massenspezifischen Enthalpie ist es möglich, die Konstante aus den Daten dieser Arbeit, durch eine Rückrechnung neu zu ermitteln und mit der Literatur zu vergleichen. Insgesamt geben die Ergebnisse Aufschluss über wichtige Parameter der Strömung wie Geschwindigkeit, Temperaturen, Teilchendichte, Totaldruck, Wärmestromdichte und massenspezifische Enthalpie. Weiter sind über die identifizierten Atome und Moleküle Aussagen über die chemische Zusammensetzung der Strömung möglich, wodurch Betrachtungen des thermo-chemischen Zustandes der Plasmaströmung ermöglicht werden. Für die supersonische Strömung zeichnet sich das Bild eines Nichtgleichgewichtszustandes, das im Einzelnen (chemisch und thermisch) betrachtet wird. Es wird ein Vergleich der vorliegenden Strömungsdaten zu Daten der vergangenen erfolgreichen Marsmissionen sowie weltweit anderer Bodentestanlagen dargestellt. Dabei wird gezeigt, dass der Plasmawindkanal PWK3 mit dem induktiven Plasmagenerator IPG4 in der Lage ist, die Wärmestromdichte und die massenspezifische Enthalpie der bisherigen Eintrittsmissionen im vollen Umfang zu reproduzieren, jedoch der Totaldruck nur auf die frühen Phasen der Eintrittstrajektorien beschränkt simulierbar bleibt. Das Ergebnis dieser Arbeit ist eine sehr gut charakterisierte CO2-Plasmaströmung, die zur Erprobung von Hitzeschutzmaterialien für zukünftige Flüge zum Mars und der Venus verwendet werden kann.
  • Thumbnail Image
    ItemOpen Access
    Application of finite element methods to the simulation of high temperature superconductors
    (2018) Mashmool, Mojtaba; Fasoulas, Stefanos (Prof. Dr.-Ing.)