01 Fakultät Architektur und Stadtplanung

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/2

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    ItemOpen Access
    Environmental impact of a mono-material timber building envelope with enhanced energy performance
    (2022) Bucklin, Oliver; Di Bari, Roberta; Amtsberg, Felix; Menges, Achim
    Broader adoption of timber construction is a strategy for reducing negative greenhouse gas (GHG) emissions created by the construction industry. This paper proposes a novel solid timber building envelope that uses computational design and digital fabrication to improve buildings’ energy performance. Timber beams are sawn with deep slits that improve thermal insulation and are milled with various joints for airtight, structural connections. To minimize embedded energy and to simplify disposal, the envelope is assembled without adhesives or metal fasteners. The building envelope is evaluated for thermal resistance and airtightness, and fabrication is evaluated for duration and power output during sawing. Finally, a Lifecycle Assessment (LCA) is carried out. The Global Warming Potential (GWP) is compared to that of other wood envelope systems with similar thermal conductance. Compared to other timber constructions with similar building physics properties, the proposed system showed lower GWP values (-15.63 kg CO2 eq./m² construction). The development and analysis demonstrate the potential to use digitally controlled subtractive manufacturing for improving the quality of solid timber to achieve higher environmental performance in building envelopes. However, further design and fabrication optimizations may be necessary to reduce required materials and production energy.
  • Thumbnail Image
    ItemOpen Access
    Advanced timber construction industry : a quantitative review of 646 global design and construction stakeholders
    (2023) Orozco, Luis; Svatoš-Ražnjević, Hana; Wagner, Hans Jakob; Abdelaal, Moataz; Amtsberg, Felix; Weiskopf, Daniel; Menges, Achim
    There has been a multi-storey timber construction boom since the start of the millennium. While there is now a body of research on trends, benefits, and disadvantages of timber construction, there is not yet literature on the wider market or the impact of stakeholders on it. This research investigates the (i) architects, (ii) engineers, and (iii) manufacturers involved in the realization of 300 contemporary multi-storey timber buildings from an existing survey. The analysis is based on data sourced from stakeholder websites and the building survey. It evaluates the perceived level of timber expertise of stakeholders based on service categorization and stakeholder type and relates them to the buildings they worked on. The research uses quantitative methods to answer qualitative questions on the connection between architectural variety in timber construction and the stakeholders involved. Interconnectivity between stakeholders and projects is visualized in an interactive network graph. The study shows a segmented mass timber market with relatively few impactful design and construction stakeholders, mostly located in central and northern Europe. It also identifies fabricators as the largest group of innovators advancing the industry and enabling the construction of more complex projects. It reveals the importance of collaboration and knowledge sharing for the industry’s growth.
  • Thumbnail Image
    ItemOpen Access
    Co-design methods for non-standard multi-storey timber buildings
    (2023) Orozco, Luis; Krtschil, Anna; Wagner, Hans Jakob; Bechert, Simon; Amtsberg, Felix; Knippers, Jan; Menges, Achim
    To meet climate change goals and respond to increased global urbanisation, the building industry needs to improve both its building technology and its design methods. Constrained urban environments and building stock extensions are challenges for standard timber construction. Co-design promises to better integrate disciplines and processes, promising smaller feedback loops for design iteration and building verification. This article describes the integrated design, fabrication, and construction processes of a timber building prototype as a case study for the application of co-design methods. Emphasis is placed on the development of design and engineering methods, fabrication and construction processes, and materials and building systems. The development of the building prototype builds on previous research in robotic fabrication (including prefabrication, task distribution, and augmented reality integration), agent-based modelling (ABM) for the design and optimisation of structural components, and the systematisation of timber buildings and their components. The results presented in this article include a functional example of co-design from which best practises may be extrapolated as part of an inductive approach to design research. The prototype, with its co-designed process and resultant flat ceilings, integrated services, wide spans, and design adaptability for irregular column locations, has the potential to expand the design potential of multi-storey timber buildings.