01 Fakultät Architektur und Stadtplanung

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/2

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    Environmental impact of a mono-material timber building envelope with enhanced energy performance
    (2022) Bucklin, Oliver; Di Bari, Roberta; Amtsberg, Felix; Menges, Achim
    Broader adoption of timber construction is a strategy for reducing negative greenhouse gas (GHG) emissions created by the construction industry. This paper proposes a novel solid timber building envelope that uses computational design and digital fabrication to improve buildings’ energy performance. Timber beams are sawn with deep slits that improve thermal insulation and are milled with various joints for airtight, structural connections. To minimize embedded energy and to simplify disposal, the envelope is assembled without adhesives or metal fasteners. The building envelope is evaluated for thermal resistance and airtightness, and fabrication is evaluated for duration and power output during sawing. Finally, a Lifecycle Assessment (LCA) is carried out. The Global Warming Potential (GWP) is compared to that of other wood envelope systems with similar thermal conductance. Compared to other timber constructions with similar building physics properties, the proposed system showed lower GWP values (-15.63 kg CO2 eq./m² construction). The development and analysis demonstrate the potential to use digitally controlled subtractive manufacturing for improving the quality of solid timber to achieve higher environmental performance in building envelopes. However, further design and fabrication optimizations may be necessary to reduce required materials and production energy.
  • Thumbnail Image
    ItemOpen Access
    Integrated design methods for the simulation of fibre-based structures
    (2013) Waimer, Frédéric; La Magna, Riccardo; Reichert, Steffen; Schwinn, Tobias; Menges, Achim; Knippers, Jan
    The production of structural components based on fibre-reinforced polymers (FRP) for the building industry is still characterised by a classic downstream development process from design through engineering and down to fabrication. In the aerospace and automotive industry, the current technical developments in simulation and manufacturing processes have reached a highly advanced status. Nevertheless, these manufacturing and Analysis processes are in most cases non-transferable or unsuitable for architectural and structural purposes. The goal of the research presented in this paper is to take advantage of the benefits of FRPs within the architectural domain - focusing on material efficiency, durability and light-weight construction - and to find solutions for the problem of transferability into the building scale. For the construction of a Pavilion built on the campus of the University of Stuttgart in 2012, process-specific tools with a high degree of accuracy embedded from the start were developed for the material analysis, optimisation and fabrication steps. In contrast to product prototyping, which forms the basis of industrial mass production, prototype here refers to the establishment of processes within the context of a post-industrial, customised fabrication paradigm.