01 Fakultät Architektur und Stadtplanung
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/2
Browse
2 results
Search Results
Item Open Access Cross-sectional 4D-printing : upscaling self-shaping structures with differentiated material properties inspired by the large-flowered butterwort (Pinguicula grandiflora)(2023) Sahin, Ekin Sila; Cheng, Tiffany; Wood, Dylan; Tahouni, Yasaman; Poppinga, Simon; Thielen, Marc; Speck, Thomas; Menges, AchimExtrusion-based 4D-printing, which is an emerging field within additive manufacturing, has enabled the technical transfer of bioinspired self-shaping mechanisms by emulating the functional morphology of motile plant structures (e.g., leaves, petals, capsules). However, restricted by the layer-by-layer extrusion process, much of the resulting works are simplified abstractions of the pinecone scale’s bilayer structure. This paper presents a new method of 4D-printing by rotating the printed axis of the bilayers, which enables the design and fabrication of self-shaping monomaterial systems in cross sections. This research introduces a computational workflow for programming, simulating, and 4D-printing differentiated cross sections with multilayered mechanical properties. Taking inspiration from the large-flowered butterwort (Pinguicula grandiflora), which shows the formation of depressions on its trap leaves upon contact with prey, we investigate the depression formation of bioinspired 4D-printed test structures by varying each depth layer. Cross-sectional 4D-printing expands the design space of bioinspired bilayer mechanisms beyond the XY plane, allows more control in tuning their self-shaping properties, and paves the way toward large-scale 4D-printed structures with high-resolution programmability.Item Open Access Spatial winding : cooperative heterogeneous multi-robot system for fibrous structures(2020) Duque Estrada, Rebeca; Kannenberg, Fabian; Wagner, Hans Jakob; Yablonina, Maria; Menges, AchimThis research presents a cooperative heterogeneous multi-robot fabrication system for the spatial winding of filament materials. The system is based on the cooperation of a six-axis robotic arm and a customized 2 + 2 axis CNC gantry system. Heterogeneous multi-robot cooperation allows to deploy the strategy of Spatial Winding: a new method of sequential spatial fiber arrangement, based on directly interlocking filament-filament connections, achieved through wrapping one filament around another. This strategy allows to create lightweight non-regular fibrous space frame structures. The new material system was explored through physical models and digital simulations prior to deployment with the proposed robotic fabrication process. An adaptable frame setup was developed which allows the fabrication of a variety of geometries within the same frame. By introducing a multi-step curing process that integrates with the adaptable frame, the iterative production of continuous large-scale spatial frame structures is possible. This makes the structure’s scale agnostic of robotic reach and reduces the necessary formwork to the bare minimum. Through leveraging the capacities of two cooperating machines, the system allows to counteract some of their limitations. A flexible, dynamic and collaborative fabrication system is presented as a strategy to tailor the fiber in space and expand the design possibilities of lightweight fiber structures. The artifact of the proposed fabrication process is a direct expression of the material tectonics and the robotic fabrication system.