11 Interfakultäre Einrichtungen
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/12
Browse
Item Open Access Autonome Entscheidungsfindung in der Produktionssteuerung komplexer Werkstattfertigungen(Stuttgart : Fraunhofer Verlag, 2020) Waschneck, Bernd; Bauernhansl, Thomas (Prof. Dr.-Ing.)Die Variabilität in der kundenindividuellen Massenproduktion stellt eine enorme Herausforderung für die industrielle Fertigung dar. Die komplexe Werkstattfertigung als Produktionsprinzip eignet sich aufgrund der inhärenten Flexibilität besonders für die kundenindividuelle Massenproduktion. Allerdings sind die bestehenden Methodiken für die Produktionssteuerung einer Werkstattfertigung für die Einmal- oder Wiederholproduktion ausgelegt, was zu Defiziten in der Massenproduktion führt. Entweder ist die globale Qualität der Ergebnisse suboptimal oder die notwendige Echtzeitfähigkeit in der Entscheidungsfindung kann nicht bereitgestellt werden. Zudem entsteht durch Veränderungen und Anpassungen der Produktionssteuerung einer komplexen Werkstattfertigung ein hoher manueller Aufwand. In der vorliegenden Arbeit wird eine Methodik für eine dezentrale, selbstorganisierte und autonome Produktionssteuerung für eine Werkstattfertigung entwickelt, die dazu beiträgt, mit der zunehmenden Komplexität und dem Produktionsvolumen umzugehen. Dabei wird die Produktion als Reinforcement-Learning-Modell formalisiert, das die Grundlage für das autonome Lernen einer Strategie zur Optimierung der Abarbeitungsreihenfolge bildet. Mehrere kooperative Deep-Q-Network-Agenten werden in diesem Modell darauf trainiert, eine Strategie zu finden, die eine gegebene Bewertungsfunktion - meist ein Key Performance Indicator aus der Produktion - maximiert. Die Neuronalen Netze, in denen die erlernte Entscheidungslogik der Deep-Q-Network-Agenten abgebildet ist, werden nach der Trainingsphase in die Produktion übertragen. Der Multi-Agenten-Ansatz trägt dazu bei, dass der Lernvorgang beschleunigt wird und im produktiven Einsatz durch die Dezentralität Entscheidungen schneller bestimmt werden können. Die Erprobung der Methodik in zwei praxisnahen Fallbeispielen aus der Halbleiterindustrie zeigt ihre Leistungsfähigkeit. In beiden Fallbeispielen konnten Strategien zur Optimierung der Abarbeitungsreihenfolge auf oder über Expertenniveau autonom erlernt werden. Konkret konnte dadurch im zweiten Fallbeispiel der Anteil verspäteter Aufträge in einer Technologieklasse von 17, 0 % auf 1, 3 % reduziert werden. Abgerundet wird die Arbeit durch eine Einordnung in das soziotechnische System „Fabrik“, in der die Umsetzung der Reihenfolgeentscheidungen durch die Werker betrachtet wird. Dabei wird offensichtlich, dass die Optimierung der Produktionssteuerung ganzheitlich unter Einbeziehung der Werker in einem kontinuierlichen Verbesserungsprozess erfolgen muss.