11 Interfakultäre Einrichtungen

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/12

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    ItemOpen Access
    Long-term stability of capped and buffered palladium-nickel thin films and nanostructures for plasmonic hydrogen sensing applications
    (2013) Strohfeldt, Nikolai; Tittl, Andreas; Giessen, Harald
    One of the main challenges in optical hydrogen sensing is the stability of the sensor material. We found and studied an optimized material combination for fast and reliable optical palladium-based hydrogen sensing devices. It consists of a palladium-nickel alloy that is buffered by calcium fluoride and capped with a very thin layer of platinum. Our system shows response times below 10 s and almost no short-term aging effects. Furthermore, we successfully incorporated this optimized material system into plasmonic nanostructures, laying the foundation for a stable and sensitive hydrogen detector.
  • Thumbnail Image
    ItemOpen Access
    Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region
    (2012) Kedenburg, Stefan; Vieweg, Marius; Gissibl, Timo; Giessen, Harald
    Liquid-filled photonic crystal fibers and optofluidic devices require infiltration with a variety of liquids whose linear optical properties are still not well known over a broad spectral range, particularly in the near infrared. Hence, dispersion and absorption properties in the visible and near-infrared wavelength region have been determined for distilled water, heavy water, chloroform, carbon tetrachloride, toluene, ethanol, carbon disulfide, and nitrobenzene at a temperature of 20 °C. For the refractive index measurement a standard Abbe refractometer in combination with a white light laser and a technique to calculate correction terms to compensate for the dispersion of the glass prism has been used. New refractive index data and derived dispersion formulas between a wavelength of 500 nm and 1600 nm are presented in good agreement with sparsely existing reference data in this wavelength range. The absorption coefficient has been deduced from the difference of the losses of several identically prepared liquid filled glass cells or tubes of different lengths. We present absorption data in the wavelength region between 500 nm and 1750 nm.
  • Thumbnail Image
    ItemOpen Access
    Tailoring enhanced optical chirality : design principles for chiral plasmonic nanostructures
    (2012) Schäferling, Martin; Dregely, Daniel; Hentschel, Mario; Giessen, Harald
    Electromagnetic fields with strong optical chirality can be formed in the near-field of chiral plasmonic nanostructures. We calculate and visualize the degree of chirality to identify regions with relatively high values. This leads to design principles for a simple utilization of chiral fields. We investigate planar geometries which offer a convenient way to access the designated fields as well as three-dimensional nanostructures which show a very high local optical chirality.
  • Thumbnail Image
    ItemOpen Access
    Formation of chiral fields in a symmetric environment
    (2012) Schäferling, Martin; Yin, Xinghui; Giessen, Harald
    Chiral fields, i. e., electromagnetic fields with nonvanishing optical chirality, can occur next to symmetric nanostructures without geometrical chirality illuminated with linearly polarized light at normal incidence. A simple dipole model is utilized to explain this behavior theoretically. Illuminated with circularly polarized light, the chiral near-fields are still dominated by the distributions found for the linear polarization but show additional features due to the optical chirality of the incident light. Rotating the angle of linear polarization introduces more subtle changes to the distribution of optical chirality. Using our findings, we propose a novel scheme to obtain chiroptical far-field response using linearly polarized light, which could be utilized for applications such as optical enantiomer sensing.