11 Interfakultäre Einrichtungen

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/12

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    Position-dependent effects of RNA-binding proteins in the context of co-transcriptional splicing
    (2023) Horn, Timur; Gosliga, Alison; Li, Congxin; Enculescu, Mihaela; Legewie, Stefan
    Alternative splicing is an important step in eukaryotic mRNA pre-processing which increases the complexity of gene expression programs, but is frequently altered in disease. Previous work on the regulation of alternative splicing has demonstrated that splicing is controlled by RNA-binding proteins (RBPs) and by epigenetic DNA/histone modifications which affect splicing by changing the speed of polymerase-mediated pre-mRNA transcription. The interplay of these different layers of splicing regulation is poorly understood. In this paper, we derived mathematical models describing how splicing decisions in a three-exon gene are made by combinatorial spliceosome binding to splice sites during ongoing transcription. We additionally take into account the effect of a regulatory RBP and find that the RBP binding position within the sequence is a key determinant of how RNA polymerase velocity affects splicing. Based on these results, we explain paradoxical observations in the experimental literature and further derive rules explaining why the same RBP can act as inhibitor or activator of cassette exon inclusion depending on its binding position. Finally, we derive a stochastic description of co-transcriptional splicing regulation at the single-cell level and show that splicing outcomes show little noise and follow a binomial distribution despite complex regulation by a multitude of factors. Taken together, our simulations demonstrate the robustness of splicing outcomes and reveal that quantitative insights into kinetic competition of co-transcriptional events are required to fully understand this important mechanism of gene expression diversity.
  • Thumbnail Image
    ItemOpen Access
    Integrating a dynamic central metabolism model of cancer cells with a hybrid 3D multiscale model for vascular hepatocellular carcinoma growth
    (2022) Lapin, Alexey; Perfahl, Holger; Jain, Harsh Vardhan; Reuss, Matthias
    We develop here a novel modelling approach with the aim of closing the conceptual gap between tumour-level metabolic processes and the metabolic processes occurring in individual cancer cells. In particular, the metabolism in hepatocellular carcinoma derived cell lines (HEPG2 cells) has been well characterized but implementations of multiscale models integrating this known metabolism have not been previously reported. We therefore extend a previously published multiscale model of vascular tumour growth, and integrate it with an experimentally verified network of central metabolism in HEPG2 cells. This resultant combined model links spatially heterogeneous vascular tumour growth with known metabolic networks within tumour cells and accounts for blood flow, angiogenesis, vascular remodelling and nutrient/growth factor transport within a growing tumour, as well as the movement of, and interactions between normal and cancer cells. Model simulations report for the first time, predictions of spatially resolved time courses of core metabolites in HEPG2 cells. These simulations can be performed at a sufficient scale to incorporate clinically relevant features of different tumour systems using reasonable computational resources. Our results predict larger than expected temporal and spatial heterogeneity in the intracellular concentrations of glucose, oxygen, lactate pyruvate, f16bp and Acetyl-CoA. The integrated multiscale model developed here provides an ideal quantitative framework in which to study the relationship between dosage, timing, and scheduling of anti-neoplastic agents and the physiological effects of tumour metabolism at the cellular level. Such models, therefore, have the potential to inform treatment decisions when drug response is dependent on the metabolic state of individual cancer cells.