11 Interfakultäre Einrichtungen
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/12
Browse
7 results
Search Results
Item Open Access Long-term stability of capped and buffered palladium-nickel thin films and nanostructures for plasmonic hydrogen sensing applications(2013) Strohfeldt, Nikolai; Tittl, Andreas; Giessen, HaraldOne of the main challenges in optical hydrogen sensing is the stability of the sensor material. We found and studied an optimized material combination for fast and reliable optical palladium-based hydrogen sensing devices. It consists of a palladium-nickel alloy that is buffered by calcium fluoride and capped with a very thin layer of platinum. Our system shows response times below 10 s and almost no short-term aging effects. Furthermore, we successfully incorporated this optimized material system into plasmonic nanostructures, laying the foundation for a stable and sensitive hydrogen detector.Item Open Access Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region(2012) Kedenburg, Stefan; Vieweg, Marius; Gissibl, Timo; Giessen, HaraldLiquid-filled photonic crystal fibers and optofluidic devices require infiltration with a variety of liquids whose linear optical properties are still not well known over a broad spectral range, particularly in the near infrared. Hence, dispersion and absorption properties in the visible and near-infrared wavelength region have been determined for distilled water, heavy water, chloroform, carbon tetrachloride, toluene, ethanol, carbon disulfide, and nitrobenzene at a temperature of 20 °C. For the refractive index measurement a standard Abbe refractometer in combination with a white light laser and a technique to calculate correction terms to compensate for the dispersion of the glass prism has been used. New refractive index data and derived dispersion formulas between a wavelength of 500 nm and 1600 nm are presented in good agreement with sparsely existing reference data in this wavelength range. The absorption coefficient has been deduced from the difference of the losses of several identically prepared liquid filled glass cells or tubes of different lengths. We present absorption data in the wavelength region between 500 nm and 1750 nm.Item Open Access Degradation rate location dependency of photovoltaic systems(2020) Frick, Alexander; Makrides, George; Schubert, Markus; Schlecht, Matthias; Georghiou, George E.A main challenge towards ensuring improved lifetime performance and reduction of financial risks of photovoltaic (PV) technologies remains the accurate degradation quantification of field systems and the dependency of this performance loss rate to climatic conditions. The purpose of this study is to address these technological issues by presenting a unified methodology for accurately calculating the degradation rate (𝑅𝐷) of PV systems and provide evidence that degradation mechanisms are location dependent. The method followed included the application of data inference and time series analytics, in the scope of comparing the long-term 𝑅𝐷 of different crystalline Silicon (c-Si) PV systems, installed at different climatic locations. The application of data quality and filtering steps ensured data fidelity for the 𝑅𝐷 analysis. The yearly 𝑅𝐷 results demonstrated that the adopted time series analytical techniques converged after 7 years and were in close agreement to the degradation results obtained from indoor standardized procedures. Finally, the initial hypothesis that the 𝑅𝐷 is location dependent was verified, since the multicrystalline silicon (multi-c-Si) systems at the warm climatic region exhibited higher degradation compared to the respective systems at the moderate climate. For the investigated monocrystalline silicon (mono-c-Si) systems the location-dependency is also affected by the manufacturing technology.Item Open Access Tailoring enhanced optical chirality : design principles for chiral plasmonic nanostructures(2012) Schäferling, Martin; Dregely, Daniel; Hentschel, Mario; Giessen, HaraldElectromagnetic fields with strong optical chirality can be formed in the near-field of chiral plasmonic nanostructures. We calculate and visualize the degree of chirality to identify regions with relatively high values. This leads to design principles for a simple utilization of chiral fields. We investigate planar geometries which offer a convenient way to access the designated fields as well as three-dimensional nanostructures which show a very high local optical chirality.Item Open Access Leaching via weak spots in photovoltaic modules(2021) Nover, Jessica; Zapf-Gottwick, Renate; Feifel, Carolin; Koch, Michael; Werner, Juergen HeinzThis study identifies unstable and soluble layers in commercial photovoltaic modules during 1.5 year long-term leaching. Our experiments cover modules from all major photovoltaic technologies containing solar cells from crystalline silicon (c-Si), amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). These technologies cover more than 99.9% of the world market. We cut out module pieces of 5 × 5 cm2 in size from these modules and leached them in water-based solutions with pH 4, pH 7, and pH 11, in order to simulate different environmental conditions. Unstable layers open penetration paths for water-based solutions; finally, the leaching results in delamination. In CdTe containing module pieces, the CdTe itself and the back contact are unstable and highly soluble. In CIGS containing module pieces, all of the module layers are more or less soluble. In the case of c-Si module pieces, the cells’ aluminum back contact is unstable. Module pieces from a-Si technology also show a soluble back contact. Long-term leaching leads to delamination in all kinds of module pieces; delamination depends strongly on the pH value of the solutions. For low pH-values, the time dependent leaching is well described by an exponential saturation behavior and a leaching time constant. The time constant depends on the pH, as well as on accelerating conditions such as increased temperature and/or agitation. Our long-term experiments clearly demonstrate that it is possible to leach out all, or at least a large amount, of the (toxic) elements from the photovoltaic modules. It is therefore not sufficient to carry out experiments just over 24 h and to conclude on the stability and environmental impact of photovoltaic modules.Item Open Access Size- and surface-dependent solubility of cadmium telluride in aqueous solutions(2021) Zapf-Gottwick, Renate; Zorn, Matthias; Nover, Jessica; Koch, Michael; Feifel, Carolin; Werner, Jürgen H.Due to the toxicity of cadmium (Cd) and the scarcity of telluride (Te), CdTe-based photovoltaic modules have been under discussion during the last few years. In particular, the stability of CdTe in aqueous solutions is under debate. Here we show that the stability of CdTe depends not only on the pH of water-based solutions but also on size and surface treatment of CdTe particles. We compare milled module pieces with CdTe powders of different particle size. The leaching of CdTe is conditioned by the outdiffusion of Cd and Te at the interface between CdTe particles and the aqueous solution. The smaller the particle size, the faster the leaching. Therefore, milled module pieces decompose faster than CdTe powders with relatively large grains. We observe a dependence on time t according to t0.43. The room temperature diffusion coefficients are calculated as DCd ≈ 3 × 10-17 cm2/s for Cd, and DTe ≈ 1.5 × 10−17 cm2/s for Te in pH4. The chemical instability in aqueous solutions follows thermodynamic considerations. The solution behavior of Cd and Te depends on the pH value and the redox potential of the aqueous solutions. Chemical treatments such as those used in solar cell production modify the surface of the CdTe particles and their leaching behavior.Item Open Access Formation of chiral fields in a symmetric environment(2012) Schäferling, Martin; Yin, Xinghui; Giessen, HaraldChiral fields, i. e., electromagnetic fields with nonvanishing optical chirality, can occur next to symmetric nanostructures without geometrical chirality illuminated with linearly polarized light at normal incidence. A simple dipole model is utilized to explain this behavior theoretically. Illuminated with circularly polarized light, the chiral near-fields are still dominated by the distributions found for the linear polarization but show additional features due to the optical chirality of the incident light. Rotating the angle of linear polarization introduces more subtle changes to the distribution of optical chirality. Using our findings, we propose a novel scheme to obtain chiroptical far-field response using linearly polarized light, which could be utilized for applications such as optical enantiomer sensing.