11 Interfakultäre Einrichtungen

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/12

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    ItemOpen Access
    Association between vitamin D status and eryptosis : results from the German National Cohort study
    (2023) Ewendt, Franz; Schmitt, Marvin; Kluttig, Alexander; Kühn, Julia; Hirche, Frank; Kraus, Frank B.; Ludwig-Kraus, Beatrice; Mikolajczyk, Rafael; Wätjen, Wim; Bürkner, Paul-Christian; Föller, Michael; Stangl, Gabriele I.
    Vitamin D, besides its classical effect on mineral homeostasis and bone remodeling, can also modulate apoptosis. A special form of apoptosis termed eryptosis appears in erythrocytes. Eryptosis is characterized by cell shrinkage, membrane blebbing, and cell membrane phospholipid disorganization and associated with diseases such as sepsis, malaria or iron deficiency, and impaired microcirculation. To our knowledge, this is the first study that linked vitamin D with eryptosis in humans. This exploratory cross-sectional trial investigated the association between the vitamin D status assessed by the concentration of plasma 25-hydroxyvitamin D (25(OH)D) and eryptosis. Plasma 25(OH)D was analyzed by LC-MS/MS, and eryptosis was estimated from annexin V-FITC-binding erythrocytes by FACS analysis in 2074 blood samples from participants of the German National Cohort Study. We observed a weak but clear correlation between low vitamin D status and increased eryptosis ( r  =  − 0.15; 95% CI [− 0.19, − 0.10]). There were no differences in plasma concentrations of 25(OH)D and eryptosis between male and female subjects. This finding raises questions of the importance of vitamin D status for eryptosis in terms of increased risk for anemia or cardiovascular events.
  • Thumbnail Image
    ItemOpen Access
    Not sorcery after all : roles of multiple charged residues in membrane insertion of gasdermin-A3
    (2022) Korn, Viktoria; Pluhackova, Kristyna
    Gasdermins execute programmatory cell death, known as pyroptosis, by forming medium-sized membrane pores. Recently, the molecular structure of those pores as well as the diversity in their shape and size have been revealed by cryoTEM and atomic force microscopy, respectively. Even though a growth of smaller to larger oligomers and reshaping from slits to rings could be documented, the initiation of the gasdermin pore formation remains a mystery. In one hypothesis, gasdermin monomers insert into membranes before associating into oligomeric pores. In the other hypothesis, gasdermin oligomers preassemble on the membrane surface prior to membrane insertion. Here, by studying the behavior of monomeric membrane-inserted gasdermin-A3 (GSDMA3), we unveil that a monomeric gasdermin prefers the membrane-adsorbed over the membrane-inserted state. Our results thus support the hypothesis of oligomers preassembling on the membrane surface before membrane penetration. At the same time, our simulations of small membrane-inserted arcs of GSDMA3 suggest that the inserting oligomer can be small and does not have to comprise a full ring of approximately 26-30 subunits. Moreover, our simulations have revealed an astonishingly large impact of salt-bridge formation and protein surroundings on the transmembrane passage of charged residues, reducing the energetic cost by up to 53% as compared to their free forms. The here observed free energy barrier of mere 5.6 kcal/mol for the membrane insertion of monomeric GSDMA3 explains the surprising ability of gasdermins to spontaneously self-insert into cellular membranes.
  • Thumbnail Image
    ItemOpen Access
    WildLab : a naturalistic free viewing experiment reveals previously unknown electroencephalography signatures of face processing
    (2022) Gert, Anna L.; Ehinger, Benedikt V.; Timm, Silja; Kietzmann, Tim C.; König, Peter
    Neural mechanisms of face perception are predominantly studied in well‐controlled experimental settings that involve random stimulus sequences and fixed eye positions. Although powerful, the employed paradigms are far from what constitutes natural vision. Here, we demonstrate the feasibility of ecologically more valid experimental paradigms using natural viewing behaviour, by combining a free viewing paradigm on natural scenes, free of photographer bias, with advanced data processing techniques that correct for overlap effects and co‐varying non‐linear dependencies of multiple eye movement parameters. We validate this approach by replicating classic N170 effects in neural responses, triggered by fixation onsets (fixation event‐related potentials [fERPs]). Importantly, besides finding a strong correlation between both experiments, our more natural stimulus paradigm yielded smaller variability between subjects than the classic setup. Moving beyond classic temporal and spatial effect locations, our experiment furthermore revealed previously unknown signatures of face processing: This includes category‐specific modulation of the event‐related potential (ERP)'s amplitude even before fixation onset, as well as adaptation effects across subsequent fixations depending on their history.