11 Interfakultäre Einrichtungen

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/12

Browse

Search Results

Now showing 1 - 10 of 14
  • Thumbnail Image
    ItemOpen Access
    On the accurate estimation of information-theoretic quantities from multi-dimensional sample data
    (2024) Álvarez Chaves, Manuel; Gupta, Hoshin V.; Ehret, Uwe; Guthke, Anneli
    Using information-theoretic quantities in practical applications with continuous data is often hindered by the fact that probability density functions need to be estimated in higher dimensions, which can become unreliable or even computationally unfeasible. To make these useful quantities more accessible, alternative approaches such as binned frequencies using histograms and k -nearest neighbors ( k -NN) have been proposed. However, a systematic comparison of the applicability of these methods has been lacking. We wish to fill this gap by comparing kernel-density-based estimation (KDE) with these two alternatives in carefully designed synthetic test cases. Specifically, we wish to estimate the information-theoretic quantities: entropy, Kullback–Leibler divergence, and mutual information, from sample data. As a reference, the results are compared to closed-form solutions or numerical integrals. We generate samples from distributions of various shapes in dimensions ranging from one to ten. We evaluate the estimators’ performance as a function of sample size, distribution characteristics, and chosen hyperparameters. We further compare the required computation time and specific implementation challenges. Notably, k -NN estimation tends to outperform other methods, considering algorithmic implementation, computational efficiency, and estimation accuracy, especially with sufficient data. This study provides valuable insights into the strengths and limitations of the different estimation methods for information-theoretic quantities. It also highlights the significance of considering the characteristics of the data, as well as the targeted information-theoretic quantity when selecting an appropriate estimation technique. These findings will assist scientists and practitioners in choosing the most suitable method, considering their specific application and available data. We have collected the compared estimation methods in a ready-to-use open-source Python 3 toolbox and, thereby, hope to promote the use of information-theoretic quantities by researchers and practitioners to evaluate the information in data and models in various disciplines.
  • Thumbnail Image
    ItemOpen Access
    An empirical study of Linespots : a novel past‐fault algorithm
    (2021) Scholz, Maximilian; Torkar, Richard
    This paper proposes the novel past‐faults fault prediction algorithm Linespots, based on the Bugspots algorithm. We analyse the predictive performance and runtime of Linespots compared with Bugspots with an empirical study using the most significant self‐built dataset as of now, including high‐quality samples for validation. As a novelty in fault prediction, we use Bayesian data analysis and Directed Acyclic Graphs to model the effects. We found consistent improvements in the predictive performance of Linespots over Bugspots for all seven evaluation metrics. We conclude that Linespots should be used over Bugspots in all cases where no real‐time performance is necessary.
  • Thumbnail Image
    ItemOpen Access
    Modeling the chemoelectromechanical behavior of skeletal muscle using the parallel open-source software library OpenCMISS
    (2013) Heidlauf, Thomas; Röhrle, Oliver
    An extensible, flexible, multiscale and multiphysics model for non-isometric skeletal muscle behavior is presented. The skeletal muscle chemoelectromechanical model is based on a bottom-up approach modeling the entire excitation-contraction pathway by strongly coupling a detailed biophysical model of a half-sarcomere to the propagation of action potentials along skeletal muscle fibers, and linking cellular parameters to a transversely isotropic continuum-mechanical constitutive equation describing the overall mechanical behavior of skeletal muscle tissue. Since the multiscale model exhibits separable time scales, a special emphasis is placed on employing computationally efficient staggered solution schemes. Further, the implementation builds on the open-source software library OpenCMISS and uses state-ofthe-art parallelization techniques taking advantage of the unique anatomical fiber architecture of skeletal muscles. OpenCMISS utilizes standardized data structures for geometrical aspects (FieldML) and cellular models (CellML). Both standards are designed to allow for a maximum on flexibility, reproducibility, and extensibility. The results demonstrate the model´s capability of simulating different aspects of non-isometric muscle contraction and to efficiently simulate the chemoelectromechanical behavior in complex skeletal muscles such as the tibialis anterior muscle.
  • Thumbnail Image
    ItemOpen Access
    On the information obtainable from comparative judgments
    (2022) Bürkner, Paul-Christian
    Personality tests employing comparative judgments have been proposed as an alternative to Likert-type rating scales. One of the main advantages of a comparative format is that it can reduce faking of responses in high-stakes situations. However, previous research has shown that it is highly difficult to obtain trait score estimates that are both faking resistant and sufficiently accurate for individual-level diagnostic decisions. With the goal of contributing to a solution, I study the information obtainable from comparative judgments analyzed by means of Thurstonian IRT models. First, I extend the mathematical theory of ordinal comparative judgments and corresponding models. Second, I provide optimal test designs for Thurstonian IRT models that maximize the accuracy of people’s trait score estimates from both frequentist and Bayesian statistical perspectives. Third, I derive analytic upper bounds for the accuracy of these trait estimates achievable through ordinal Thurstonian IRT models. Fourth, I perform numerical experiments that complement results obtained in earlier simulation studies. The combined analytical and numerical results suggest that it is indeed possible to design personality tests using comparative judgments that yield trait scores estimates sufficiently accurate for individual-level diagnostic decisions, while reducing faking in high-stakes situations. Recommendations for the practical application of comparative judgments for the measurement of personality, specifically in high-stakes situations, are given.
  • Thumbnail Image
    ItemOpen Access
    FFT-based homogenization at finite strains using composite boxels (ComBo)
    (2022) Keshav, Sanath; Fritzen, Felix; Kabel, Matthias
    Computational homogenization is the gold standard for concurrent multi-scale simulations (e.g., FE2) in scale-bridging applications. Often the simulations are based on experimental and synthetic material microstructures represented by high-resolution 3D image data. The computational complexity of simulations operating on such voxel data is distinct. The inability of voxelized 3D geometries to capture smooth material interfaces accurately, along with the necessity for complexity reduction, has motivated a special local coarse-graining technique called composite voxels (Kabel et al. Comput Methods Appl Mech Eng 294: 168-188, 2015). They condense multiple fine-scale voxels into a single voxel, whose constitutive model is derived from the laminate theory. Our contribution generalizes composite voxels towards composite boxels (ComBo) that are non-equiaxed, a feature that can pay off for materials with a preferred direction such as pseudo-uni-directional fiber composites. A novel image-based normal detection algorithm is devised which (i) allows for boxels in the firsts place and (ii) reduces the error in the phase-averaged stresses by around 30% against the orientation cf. Kabel et al. (Comput Methods Appl Mech Eng 294: 168-188, 2015) even for equiaxed voxels. Further, the use of ComBo for finite strain simulations is studied in detail. An efficient and robust implementation is proposed, featuring an essential selective back-projection algorithm preventing physically inadmissible states. Various examples show the efficiency of ComBo against the original proposal by Kabel et al. (Comput Methods Appl Mech Eng 294: 168-188, 2015) and the proposed algorithmic enhancements for nonlinear mechanical problems. The general usability is emphasized by examining various Fast Fourier Transform (FFT) based solvers, including a detailed description of the Doubly-Fine Material Grid (DFMG) for finite strains. All of the studied schemes benefit from the ComBo discretization.
  • Thumbnail Image
    ItemOpen Access
    A physiologically based, multi-scale model of skeletal muscle structure and function
    (2012) Röhrle, Oliver; Davidson, John B.; Pullan, Andrew J.
    Models of skeletal muscle can be classified as phenomenological or biophysical. Phenomenological models predict the muscle’s response to a specified input based on experimental measurements. Prominent phenomenological models are the Hill-type muscle models, which have been incorporated into rigid-body modeling frameworks, and three-dimensional continuum-mechanical models. Biophysically based models attempt to predict the muscle’s response as emerging from the underlying physiology of the system. In this contribution, the conventional biophysically based modeling methodology is extended to include several structural and functional characteristics of skeletal muscle. The result is a physiologically based, multi-scale skeletal muscle finite element model that is capable of representing detailed, geometrical descriptions of skeletal muscle fibers and their grouping. Together with a well-established model of motor-unit recruitment, the electro-physiological behavior of single muscle fibers within motor units is computed and linked to a continuummechanical constitutive law. The bridging between the cellular level and the organ level has been achieved via a multi-scale constitutive law and homogenization. The effect of homogenization has been investigated by varying the number of embedded skeletal muscle fibers and/or motor units and computing the resulting exerted muscle forces while applying the same excitatory input. All simulations were conducted using an anatomically realistic finite element model of the tibialis anterior muscle. Given the fact that the underlying electro-physiological cellular muscle model is capable of modeling metabolic fatigue effects such as potassium accumulation in the T-tubular space and inorganic phosphate build-up, the proposed framework provides a novel simulation-based way to investigate muscle behavior ranging from motor-unit recruitment to force generation and fatigue.
  • Thumbnail Image
    ItemOpen Access
    A multiscale chemo-electro-mechanical skeletal muscle model to analyze muscle contraction and force generation for different muscle fiber arrangements
    (2014) Heidlauf, Thomas; Röhrle, Oliver
    The presented chemo-electro-mechanical skeletal muscle model relies on a continuum-mechanical formulation describing the muscle's deformation and force generation on the macroscopic muscle level. Unlike other three-dimensional models, the description of the activation-induced behavior of the mechanical model is entirely based on chemo-electro-mechanical principles on the microscopic sarcomere level. Yet, the multiscale model reproduces key characteristics of skeletal muscles such as experimental force-length and force-velocity data on the macroscopic whole muscle level. The paper presents the methodological approaches required to obtain such a multiscale model, and demonstrates the feasibility of using such a model to analyze differences in the mechanical behavior of parallel-fibered muscles, in which the muscle fibers either span the entire length of the fascicles or terminate intrafascicularly. The presented results reveal that muscles, in which the fibers span the entire length of the fascicles, show lower peak forces, more dispersed twitches and fusion of twitches at lower stimulation frequencies. In detail, the model predicted twitch rise times of 38.2 ms and 17.2 ms for a 12 cm long muscle, in which the fibers span the entire length of the fascicles and with twelve fiber compartments in series, respectively. Further, the twelve-compartment model predicted peak twitch forces that were 19 % higher than in the single-compartment model. The analysis of sarcomere lengths during fixed-end single twitch contractions at optimal length predicts rather small sarcomere length changes. The observed lengths range from 75 to 111 % of the optimal sarcomere length, which corresponds to a region with maximum filament overlap. This result suggests that stability issues resulting from activation-induced stretches of non-activated sarcomeres are unlikely in muscles with passive forces appearing at short muscle length.
  • Thumbnail Image
    ItemOpen Access
    Learning soft millirobot multimodal locomotion with sim‐to‐real transfer
    (2024) Demir, Sinan Ozgun; Tiryaki, Mehmet Efe; Karacakol, Alp Can; Sitti, Metin
    With wireless multimodal locomotion capabilities, magnetic soft millirobots have emerged as potential minimally invasive medical robotic platforms. Due to their diverse shape programming capability, they can generate various locomotion modes, and their locomotion can be adapted to different environments by controlling the external magnetic field signal. Existing adaptation methods, however, are based on hand‐tuned signals. Here, a learning‐based adaptive magnetic soft millirobot multimodal locomotion framework empowered by sim‐to‐real transfer is presented. Developing a data‐driven magnetic soft millirobot simulation environment, the periodic magnetic actuation signal is learned for a given soft millirobot in simulation. Then, the learned locomotion strategy is deployed to the real world using Bayesian optimization and Gaussian processes. Finally, automated domain recognition and locomotion adaptation for unknown environments using a Kullback‐Leibler divergence‐based probabilistic method are illustrated. This method can enable soft millirobot locomotion to quickly and continuously adapt to environmental changes and explore the actuation space for unanticipated solutions with minimum experimental cost.
  • Thumbnail Image
    ItemOpen Access
    Task space adaptation via the learning of gait controllers of magnetic soft millirobots
    (2021) Demir, Sinan O.; Culha, Utku; Karacakol, Alp C.; Pena-Francesch, Abdon; Trimpe, Sebastian; Sitti, Metin
    Untethered small-scale soft robots have promising applications in minimally invasive surgery, targeted drug delivery, and bioengineering applications as they can directly and non-invasively access confined and hard-to-reach spaces in the human body. For such potential biomedical applications, the adaptivity of the robot control is essential to ensure the continuity of the operations, as task environment conditions show dynamic variations that can alter the robot’s motion and task performance. The applicability of the conventional modeling and control methods is further limited for soft robots at the small-scale owing to their kinematics with virtually infinite degrees of freedom, inherent stochastic variability during fabrication, and changing dynamics during real-world interactions. To address the controller adaptation challenge to dynamically changing task environments, we propose using a probabilistic learning approach for a millimeter-scale magnetic walking soft robot using Bayesian optimization (BO) and Gaussian processes (GPs). Our approach provides a data-efficient learning scheme by finding the gait controller parameters while optimizing the stride length of the walking soft millirobot using a small number of physical experiments. To demonstrate the controller adaptation, we test the walking gait of the robot in task environments with different surface adhesion and roughness, and medium viscosity, which aims to represent the possible conditions for future robotic tasks inside the human body. We further utilize the transfer of the learned GP parameters among different task spaces and robots and compare their efficacy on the improvement of data-efficient controller learning.
  • Thumbnail Image
    ItemOpen Access
    Semi-explicit integration of second order for weakly coupled poroelasticity
    (2024) Altmann, R.; Maier, R.; Unger, B.
    We introduce a semi-explicit time-stepping scheme of second order for linear poroelasticity satisfying a weak coupling condition. Here, semi-explicit means that the system, which needs to be solved in each step, decouples and hence improves the computational efficiency. The construction and the convergence proof are based on the connection to a differential equation with two time delays, namely one and two times the step size. Numerical experiments confirm the theoretical results and indicate the applicability to higher-order schemes.