11 Interfakultäre Einrichtungen

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/12

Browse

Search Results

Now showing 1 - 10 of 13
  • Thumbnail Image
    ItemOpen Access
    Kontextszenarien der deutschen Energiewende : eine Datenerhebung zur Analyse gesellschaftlich-politischer Rahmenbedingungen einer sozio-technischen Transformation
    (2015) Weimer-Jehle, Wolfgang; Prehofer, Sigrid; Hauser, Wolfgang
    Dieser Bericht beschreibt eine Expertenerhebung zum sozio-technischen Kontext der deutschen Energiewende und stellt ausgewählte Ergebnisse vor. Wesentliche sozio-technische Treiber des Energiesystems und dessen Entwicklung wurden identifiziert sowie alternative Zukünfte für jeden Treiber auf Basis von Literaturanalyse und Expertenbefragungen abgeleitet. Die wechselseitigen Beziehungen zwischen den möglichen Zukünften der Treiber wurden in einer Reihe von Experteninterviews unter Verwendung der Cross-Impact Bilanz Analyse abgeschätzt. Eine vorläufige Evaluation der Rohdaten ergab insgesamt 565 konsistente Kontextszenarien. Bevor jedoch endgültige Ergebnisse abgeleitet werden können, ist eine weitere Konsolidierung der Daten notwendig.
  • Thumbnail Image
    ItemOpen Access
    Long-term stability of capped and buffered palladium-nickel thin films and nanostructures for plasmonic hydrogen sensing applications
    (2013) Strohfeldt, Nikolai; Tittl, Andreas; Giessen, Harald
    One of the main challenges in optical hydrogen sensing is the stability of the sensor material. We found and studied an optimized material combination for fast and reliable optical palladium-based hydrogen sensing devices. It consists of a palladium-nickel alloy that is buffered by calcium fluoride and capped with a very thin layer of platinum. Our system shows response times below 10 s and almost no short-term aging effects. Furthermore, we successfully incorporated this optimized material system into plasmonic nanostructures, laying the foundation for a stable and sensitive hydrogen detector.
  • Thumbnail Image
    ItemOpen Access
    Spatio-temporal and immersive visual analytics for advanced manufacturing
    (2019) Herr, Dominik; Ertl, Thomas (Prof. Dr.)
    The increasing amount of digitally available information in the manufacturing domain is accompanied by a demand to use these data to increase the efficiency of a product’s overall design, production, and maintenance steps. This idea, often understood as a part of Industry 4.0, requires the integration of information technologies into traditional manufacturing craftsmanship. Despite an increasing amount of automation in the production domain, human creativity is still essential when designing new products. Further, the cognitive ability of skilled workers to comprehend complex situations and solve issues by adapting solutions of similar problems makes them indispensable. Nowadays, customers demand highly customizable products. Therefore, modern factories need to be highly flexible regarding the lot size and adaptable regarding the produced goods, resulting in increasingly complex processes. One of the major challenges in the manufacturing domain is to optimize the interplay of human expert knowledge and experience with data analysis algorithms. Human experts can quickly comprehend previously unknown patterns and transfer their knowledge and gained experience to solve new issues. Contrarily, data analysis algorithms can process tasks very efficiently at the cost of limited adaptability to handle new situations. Further, they usually lack a sense of semantics, which leads to a need to combine them with human world knowledge to assess the meaningfulness of such algorithms’ results. The concept of Visual Analytics combines the advantages of the human’s cognitive abilities and the processing power of computers. The data are visualized, allowing the users to understand and manipulate them interactively, while algorithms process the data according to the users’ interaction. In the manufacturing domain, a common way to describe the different states of a product from the idea throughout the realization until the product is disposed is the product lifecycle. This thesis presents approaches along the first three phases of the lifecycle: design, planning, and production. A challenge that all of the phases face is that it is necessary to be able to find, understand, and assess relations, for example between concepts, production line layouts, or events reported in a production line. As all phases of the product lifecycle cover broad topics, this thesis focuses on supporting experts in understanding and comparing relations between important aspects of the respective phases, such as concept relationships in the patent domain, as well as production line layouts, or relations of events reported in a production line. During the design phase, it is important to understand the relations of concepts, such as key concepts in patents. Hence, this thesis presents approaches that help domain experts to explore the relationship of such concepts visually. It first focuses on the support of analyzing patent relationships and then extends the presented approach to convey relations about arbitrary concepts, such as authors in scientific literature or keywords on websites. During the planning phase, it is important to discover and compare different possibilities to arrange production line components and additional stashes. In this field, the digitally available data is often insufficient to propose optimal layouts. Therefore, this thesis proposes approaches that help planning experts to design new layouts and optimize positions of machine tools and other components in existing production lines. In the production phase, supporting domain experts in understanding recurring issues and their relation is important to improve the overall efficiency of a production line. This thesis presents visual analytics approaches to help domain experts to understand the relation between events reported by machine tools and comprehend recurring error patterns that may indicate systematic issues during production. Then, this thesis combines the insights and lessons learned from the previous approaches to propose a system that combines augmented reality with visual analysis to allow the monitoring and a situated analysis of machine events directly at the production line. The presented approach primarily focuses on the support of operators on the shop floor. At last, this thesis discusses a possible combination of the product lifecycle with knowledge generating models to communicate insights between the phases, e.g., to prevent issues that are caused from problematic design decisions in earlier phases. In summary, this thesis makes several fundamental contributions to advancing visual analytics techniques in the manufacturing domain by devising new interactive analysis techniques for concept and event relations and by combining them with augmented reality approaches enabling an immersive analysis to improve event handling during production.
  • Thumbnail Image
    ItemOpen Access
    Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region
    (2012) Kedenburg, Stefan; Vieweg, Marius; Gissibl, Timo; Giessen, Harald
    Liquid-filled photonic crystal fibers and optofluidic devices require infiltration with a variety of liquids whose linear optical properties are still not well known over a broad spectral range, particularly in the near infrared. Hence, dispersion and absorption properties in the visible and near-infrared wavelength region have been determined for distilled water, heavy water, chloroform, carbon tetrachloride, toluene, ethanol, carbon disulfide, and nitrobenzene at a temperature of 20 °C. For the refractive index measurement a standard Abbe refractometer in combination with a white light laser and a technique to calculate correction terms to compensate for the dispersion of the glass prism has been used. New refractive index data and derived dispersion formulas between a wavelength of 500 nm and 1600 nm are presented in good agreement with sparsely existing reference data in this wavelength range. The absorption coefficient has been deduced from the difference of the losses of several identically prepared liquid filled glass cells or tubes of different lengths. We present absorption data in the wavelength region between 500 nm and 1750 nm.
  • Thumbnail Image
    ItemOpen Access
    Modeling the chemoelectromechanical behavior of skeletal muscle using the parallel open-source software library OpenCMISS
    (2013) Heidlauf, Thomas; Röhrle, Oliver
    An extensible, flexible, multiscale and multiphysics model for non-isometric skeletal muscle behavior is presented. The skeletal muscle chemoelectromechanical model is based on a bottom-up approach modeling the entire excitation-contraction pathway by strongly coupling a detailed biophysical model of a half-sarcomere to the propagation of action potentials along skeletal muscle fibers, and linking cellular parameters to a transversely isotropic continuum-mechanical constitutive equation describing the overall mechanical behavior of skeletal muscle tissue. Since the multiscale model exhibits separable time scales, a special emphasis is placed on employing computationally efficient staggered solution schemes. Further, the implementation builds on the open-source software library OpenCMISS and uses state-ofthe-art parallelization techniques taking advantage of the unique anatomical fiber architecture of skeletal muscles. OpenCMISS utilizes standardized data structures for geometrical aspects (FieldML) and cellular models (CellML). Both standards are designed to allow for a maximum on flexibility, reproducibility, and extensibility. The results demonstrate the model´s capability of simulating different aspects of non-isometric muscle contraction and to efficiently simulate the chemoelectromechanical behavior in complex skeletal muscles such as the tibialis anterior muscle.
  • Thumbnail Image
    ItemOpen Access
    Modell zum maschinellen Lernen von Wirkzusammenhängen bei der Holzverarbeitung auf Basis von online-erfassten Werkzeugmaschinendaten
    (Stuttgart : Fraunhofer Verlag, 2018) Lenz, Jürgen Herbert; Westkämper, Engelbert (Univ.-Prof. a. D. Dr.-Ing. Prof. E.h. Dr.-Ing. E.h. Dr. h.c. mult.)
    Aufgrund des immer härter werdenden globalen Wettbewerbs müssen produzierende Unternehmen, die auch in der Zukunft profitabel produzieren wollen, ihre Leistungsreserven nutzten. Die Möbelfertigung, die größte holzverarbeitende Industrie, besteht im Hauptprozess aus dem Fräsen von Holzwerkstoffen. Hierbei gibt es Leistungsreserven in der Einsatzplanung der Fräswerkzeuge. Gute Einsatzplanung ist die Voraussetzung für eine hohe Verfügbarkeit des Produktionssystems. Die Einsatzplanung wird durch Entwicklungen wie individuelle Möbelstücke, kleinere Losgrößen und neue Schneidstoffe erschwert. Die Herausforderung der Planungsunsicherheit beim Werkzeugeinsatz in der Holzbearbeitung wächst zusätzlich durch die größere Anzahl an industriell hergestellten Holzwerkstoffen mit jeweils unterschiedlicher Abrasivität. Dadurch wird die Bestimmung der Reststandzeit eines Werkzeuges erschwert. Zielsetzung dieser Arbeit ist die Planungssicherheit des Werkzeugeinsatzes durch eine exakte Planung des Werkzeugwechselfensters sowie durch Prognose der Reststandzeit zu erhöhen. Mithilfe dieser Prognose kann das gesamte Standvermögen des Werkzeuges verwendet werden. Das führt dazu, dass die Verfügbarkeit des Produktionssystems erhöht wird, da durch das Überschreiten der Werkzeugeinsatzgrenze bedingte Stillstände vermieden werden. Hierfür wurde ein Modell erstellt, das online erfasste Daten aus der Werkzeugmaschinensteuerung mit kontextbezogenen Informationen aus Datenbanken wie dem ERP-System und der Werkzeugverwaltung kombiniert. Aus diesen Informationen wird eine werkzeugspezifische Einsatzhistorie gebildet und mit gemessenen physikalischen Werten über den Werkzeugverschleiß und Kantenqualität des Werkstückes in Verbindung gebracht. Diese Verbindung von Bearbeitungshistorie und echten physikalischen Messgrößen bilden die Datenbasis für das maschinelle Lernen von Wirkzusammenhängen. Durch das Erlernen dieser Zusammenhänge kann die Reststandzeit eines Werkzeuges prognostiziert werden und somit die Planungsgenauigkeit des Werkzeugeinsatzes durch exakte Festlegung von Werkzeugwechselfenstern gesteigert werden. Zur Erprobung wurde das entwickelte Modell implementiert und seine Funktionsfähigkeit anhand einer Werkstoff-/Schneidstoffpaarung validiert. Diese Erprobung zeigte dass die Wirkzusammenhänge erlernt werden können.
  • Thumbnail Image
    ItemOpen Access
    Robotermanipulationsfähigkeiten zur Automatisierung von Instandhaltungsaufgaben
    (Stuttgart : Fraunhofer Verlag, 2019) Friedrich, Christian; Verl, Alexander (Prof. Dr.-Ing. Dr. h.c. mult.)
    In Produktionssystemen spielt die Anlagenverfügbarkeit und Produktqualität, vor allem im Hinblick auf ökonomische Unternehmensziele, eine entscheidende Rolle. Damit dies erreicht werden kann, unterliegen Produktionseinrichtungen regelmäßigen Instandhaltungsarbeiten. Während für Inspektionsaufgaben bereits Verfahren zur Verfügung stehen, welche die automatisierte Fehlerdetektion, -isolation und -identifikation erlauben, bestehen bisher keine Systeme, die eine automatische Wiederherstellung des Sollzustands ermöglichen. Aufgrund dessen untersucht diese Arbeit neuartige Manipulationsfähigkeiten, die es einem autonomen Robotersystem erlauben, Wartungs- und Instandsetzungsaufgaben zu automatisieren, hierdurch den menschlichen Akteur unterstützen und langfristig zu einer Attraktivitätssteigerung der Produktion in Hochlohnländern führen könnten. Damit Robotersysteme derart komplexe Aufgaben unter realitätsnahen Bedingungen autonom lösen können, entwickelt diese Arbeit spezielle Fähigkeiten zur Planung, Steuerung und Regelung von Robotermanipulationen. Ein besonderes Hauptaugenmerk bei der Entwicklung dieser Methoden liegt dabei vor allem auf der zeiteffizienten Planung sowie der Möglichkeit zur Kompensation von Umweltunsicherheiten zwischen a priori und Sensordaten. Für die Aufgabenplanung wird ein Verfahren entwickelt, welches auf Basis von CAD- und visuellen Sensordaten, die notwendigen Manipulationen in Form symbolischer Anweisungen generiert. Durch einen neuartigen stichprobenbasierten Ansatz wird eine zeiteffiziente Berechnung möglicher Demontageräume erlaubt. Damit eine zielgerichtete Akquirierung relevanter Sensordaten ermöglicht werden kann, wird ein Algorithmus vorgestellt, der mittels aufgabenabhängiger Metriken die Kombination von Kartenexploration und Objekterkennung in einer geeigneten Sensorpose zulässt. Zur Planung einer Bewegungsbahn, für die Ausführung der einzelnen Manipulationsaufgaben, werden, dem Stand der Technik gemäß, bekannte globale Bahnplanungsverfahren verwendet. Jedoch wird eine Vorverarbeitungsstrategie vorgeschlagen, die auf Grundlage einer adaptiven Schrittweitensteuerung eine deutliche Reduktion des Planungsraums zulässt, wodurch eine niedrigere Planungszeit bei höherer Erfolgsrate in der Lösungsfindung erzielt wird. Die aus der Planung generierte Beschreibung wird weitergehend in ein Anwenderprogramm umgesetzt. Hierzu wird ausgehend von einer allgemeinen Dekompositionsvorschrift die Generierung elementarer Roboterkontrollanweisungen erlaubt, welche aufgabenabhängig über propriozeptive oder exterozeptive Regler ausgeführt werden. Die entwickelten Manipulationsfähigkeiten werden in eine Steuerungsarchitektur integriert und ganzheitlich an einem Demonstratorsystem, anhand praxisrelevanter Anwendungsfälle, experimentell validiert.
  • Thumbnail Image
    ItemOpen Access
    Tailoring enhanced optical chirality : design principles for chiral plasmonic nanostructures
    (2012) Schäferling, Martin; Dregely, Daniel; Hentschel, Mario; Giessen, Harald
    Electromagnetic fields with strong optical chirality can be formed in the near-field of chiral plasmonic nanostructures. We calculate and visualize the degree of chirality to identify regions with relatively high values. This leads to design principles for a simple utilization of chiral fields. We investigate planar geometries which offer a convenient way to access the designated fields as well as three-dimensional nanostructures which show a very high local optical chirality.
  • Thumbnail Image
    ItemOpen Access
    A physiologically based, multi-scale model of skeletal muscle structure and function
    (2012) Röhrle, Oliver; Davidson, John B.; Pullan, Andrew J.
    Models of skeletal muscle can be classified as phenomenological or biophysical. Phenomenological models predict the muscle’s response to a specified input based on experimental measurements. Prominent phenomenological models are the Hill-type muscle models, which have been incorporated into rigid-body modeling frameworks, and three-dimensional continuum-mechanical models. Biophysically based models attempt to predict the muscle’s response as emerging from the underlying physiology of the system. In this contribution, the conventional biophysically based modeling methodology is extended to include several structural and functional characteristics of skeletal muscle. The result is a physiologically based, multi-scale skeletal muscle finite element model that is capable of representing detailed, geometrical descriptions of skeletal muscle fibers and their grouping. Together with a well-established model of motor-unit recruitment, the electro-physiological behavior of single muscle fibers within motor units is computed and linked to a continuummechanical constitutive law. The bridging between the cellular level and the organ level has been achieved via a multi-scale constitutive law and homogenization. The effect of homogenization has been investigated by varying the number of embedded skeletal muscle fibers and/or motor units and computing the resulting exerted muscle forces while applying the same excitatory input. All simulations were conducted using an anatomically realistic finite element model of the tibialis anterior muscle. Given the fact that the underlying electro-physiological cellular muscle model is capable of modeling metabolic fatigue effects such as potassium accumulation in the T-tubular space and inorganic phosphate build-up, the proposed framework provides a novel simulation-based way to investigate muscle behavior ranging from motor-unit recruitment to force generation and fatigue.
  • Thumbnail Image
    ItemOpen Access
    A multiscale chemo-electro-mechanical skeletal muscle model to analyze muscle contraction and force generation for different muscle fiber arrangements
    (2014) Heidlauf, Thomas; Röhrle, Oliver
    The presented chemo-electro-mechanical skeletal muscle model relies on a continuum-mechanical formulation describing the muscle's deformation and force generation on the macroscopic muscle level. Unlike other three-dimensional models, the description of the activation-induced behavior of the mechanical model is entirely based on chemo-electro-mechanical principles on the microscopic sarcomere level. Yet, the multiscale model reproduces key characteristics of skeletal muscles such as experimental force-length and force-velocity data on the macroscopic whole muscle level. The paper presents the methodological approaches required to obtain such a multiscale model, and demonstrates the feasibility of using such a model to analyze differences in the mechanical behavior of parallel-fibered muscles, in which the muscle fibers either span the entire length of the fascicles or terminate intrafascicularly. The presented results reveal that muscles, in which the fibers span the entire length of the fascicles, show lower peak forces, more dispersed twitches and fusion of twitches at lower stimulation frequencies. In detail, the model predicted twitch rise times of 38.2 ms and 17.2 ms for a 12 cm long muscle, in which the fibers span the entire length of the fascicles and with twelve fiber compartments in series, respectively. Further, the twelve-compartment model predicted peak twitch forces that were 19 % higher than in the single-compartment model. The analysis of sarcomere lengths during fixed-end single twitch contractions at optimal length predicts rather small sarcomere length changes. The observed lengths range from 75 to 111 % of the optimal sarcomere length, which corresponds to a region with maximum filament overlap. This result suggests that stability issues resulting from activation-induced stretches of non-activated sarcomeres are unlikely in muscles with passive forces appearing at short muscle length.