02 Fakultät Bau- und Umweltingenieurwissenschaften

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/3

Browse

Search Results

Now showing 1 - 10 of 12
  • Thumbnail Image
    ItemOpen Access
    Assessment of uncertainties in a complex modeling chain for predicting reservoir sedimentation under changing climate
    (2023) Pesci, María Herminia; Mouris, Kilian; Haun, Stefan; Förster, Kristian
    Long-term predictions of reservoir sedimentation require an objective consideration of the preceding catchment processes. In this study, we apply a complex modeling chain to predict sedimentation processes in the Banja reservoir (Albania). The modeling chain consists of the water balance model WaSiM, the soil erosion and sediment transport model combination RUSLE-SEDD, and the 3d hydro-morphodynamic reservoir model SSIIM2 to accurately represent all relevant physical processes. Furthermore, an ensemble of climate models is used to analyze future scenarios. Although the capabilities of each model enable us to obtain satisfying results, the propagation of uncertainties in the modeling chain cannot be neglected. Hence, approximate model parameter uncertainties are quantified with the First-Order Second-Moment (FOSM) method. Another source of uncertainty for long-term predictions is the spread of climate projections. Thus, we compared both sources of uncertainties and found that the uncertainties generated by climate projections are 408% (for runoff), 539% (for sediment yield), and 272% (for bed elevation in the reservoir) larger than the model parameter uncertainties. We conclude that (i) FOSM is a suitable method for quantifying approximate parameter uncertainties in a complex modeling chain, (ii) the model parameter uncertainties are smaller than the spread of climate projections, and (iii) these uncertainties are of the same order of magnitude as the change signal for the investigated low-emission scenario. Thus, the proposed method might support modelers to communicate different sources of uncertainty in complex modeling chains, including climate impact models.
  • Thumbnail Image
    ItemOpen Access
    Advanced methods to investigate hydro‐morphological processes in open‐water environments
    (2021) Haun, Stefan; Dietrich, Stephan
    Hydro‐morphology describes the interactions between water and sediments in fluvial systems and the corresponding processes across all spatial and temporal scales. The results are natural and anthropogenically influenced bed structures and fluvial landforms. However, many of these hydro‐morphological processes cannot be described analytically yet, as a result of their stochastic behaviour and the multitude of processes involved across spatial and temporal scales. Deeper knowledge of these processes is essential, not only for understanding the system itself, but also for practical applications, which rely on correct and reliable investigations of these processes. During the European Geoscience Union (EGU) General Assembly (GA) 2018 in Vienna, Austria, the conveners of the session on “Measurements, monitoring and numerical modelling of sedimentary and hydro‐morphological processes in open‐water environments” had the idea of initiating a special issue, containing a collection of recent achievements in this research field. The aim of this extended introduction is twofold. First, an overview on research needs in investigating hydro‐morphological processes in open‐water environments is given in this article. Second, recently published studies that aim to improve the understanding of hydro‐morphological processes in rivers, lakes and reservoirs by innovative measurement approaches are discussed. In addition to submitted papers collected from the EGU GA in 2017, 2018 and 2019, related studies published in Earth Surface Processes and Landforms (ESPL) over the last two years are also incorporated into this special issue. The papers selected cover a wide range of studies with differing spatial and temporal resolutions. This broad spectrum of different scales clearly indicates the challenges associated with the development and use of advanced methods for investigating hydro‐morphological processes in open‐water environments.
  • Thumbnail Image
    ItemOpen Access
    Bayesian calibration points to misconceptions in three‐dimensional hydrodynamic reservoir modeling
    (2023) Schwindt, Sebastian; Callau Medrano, Sergio; Mouris, Kilian; Beckers, Felix; Haun, Stefan; Nowak, Wolfgang; Wieprecht, Silke; Oladyshkin, Sergey
    Three‐dimensional (3d) numerical models are state‐of‐the‐art for investigating complex hydrodynamic flow patterns in reservoirs and lakes. Such full‐complexity models are computationally demanding and their calibration is challenging regarding time, subjective decision‐making, and measurement data availability. In addition, physically unrealistic model assumptions or combinations of calibration parameters may remain undetected and lead to overfitting. In this study, we investigate if and how so‐called Bayesian calibration aids in characterizing faulty model setups driven by measurement data and calibration parameter combinations. Bayesian calibration builds on recent developments in machine learning and uses a Gaussian process emulator as a surrogate model, which runs considerably faster than a 3d numerical model. We Bayesian‐calibrate a Delft3D‐FLOW model of a pump‐storage reservoir as a function of the background horizontal eddy viscosity and diffusivity, and initial water temperature profile. We consider three scenarios with varying degrees of faulty assumptions and different uses of flow velocity and water temperature measurements. One of the scenarios forces completely unrealistic, rapid lake stratification and still yields similarly good calibration accuracy as more correct scenarios regarding global statistics, such as the root‐mean‐square error. An uncertainty assessment resulting from the Bayesian calibration indicates that the completely unrealistic scenario forces fast lake stratification through highly uncertain mixing‐related model parameters. Thus, Bayesian calibration describes the quality of calibration and correctness of model assumptions through geometric characteristics of posterior distributions. For instance, most likely calibration parameter values (posterior distribution maxima) at the calibration range limit or with widespread uncertainty characterize poor model assumptions and calibration.
  • Thumbnail Image
    ItemOpen Access
    Interdisciplinary reservoir management : a tool for sustainable water resources management
    (2021) Daus, Milan; Koberger, Katharina; Koca, Kaan; Beckers, Felix; Encinas Fernández, Jorge; Weisbrod, Barbara; Dietrich, Daniel; Gerbersdorf, Sabine Ulrike; Glaser, Rüdiger; Haun, Stefan; Hofmann, Hilmar; Martin-Creuzburg, Dominik; Peeters, Frank; Wieprecht, Silke
    Reservoirs are a common way to store and retain water serving for a multitude of purposes like storage of drinking and irrigation water, recreation, flood protection, navigation, and hydropower production, and have been built since centuries. Today, few reservoirs serve only one purpose, which requires management of present demands and interests. Since each reservoir project will cause negative impacts alongside desired advantages both on a local, regional and global scale, it is even more urgent to develop a common management framework in an attempt to mitigate negative impacts, incorporate different demands and make them visible within the discourse in order to avoid conflicts from early on. The scientific publications on reservoirs are manifold, yet a comprehensive and integrative holistic tool about management of this infrastructure is not available. Therefore, a comprehensive and integrated conceptual tool was developed and proposed by the authors of this paper that can contribute to the sustainable management of existing reservoirs. The tool presented herein is based on the results from the interdisciplinary CHARM (CHAllenges of Reservoir Management) project as well as the condensed outcome of relevant literature to aid and enhance knowledge of reservoir management. The incorporated results are based on field, laboratory and empirical social research. The project CHARM focused on five different aspects related to existing reservoirs in southern Germany (Schwarzenbachtalsperre, Franconian Lake District), namely: sedimentation of reservoirs, biostabilisation of fine sediments, toxic cyanobacteria(l) (blooms), greenhouse gas emissions from reservoirs and social contestation, respectively consent. These five research foci contributed to the topics and setup of a conceptual tool, put together by the research consortium via delphi questioning, which can be found alongside this publication to provide insights for experts and laymen. Conceptualising and analysing the management in combination with quantitative and qualitative data in one descriptive tool presents a novelty for the case studies and area of research. The distribution within the scientific community and interested public will possibly make a positive contribution to the goal of sustainable water resources management in the future.
  • Thumbnail Image
    ItemOpen Access
    Controlled reservoir drawdown : challenges for sediment management and integrative monitoring : an Austrian case study : part B: local scale
    (2020) Hauer, Christoph; Holzapfel, Patrick; Flödl, Peter; Wagner, Beatrice; Graf, Wolfram; Leitner, Patrick; Haimann, Marlene; Holzer, Georg; Haun, Stefan; Habersack, Helmut; Schletterer, Martin
    The present case study deals with a controlled drawdown beyond the operational level of the Gepatsch reservoir (Austria). Based on the awareness of potential ecological consequences, an advanced set of measures was conducted and an integrative monitoring design was implemented. This pre- and post-event monitoring included measurements regarding the cross sectional variability and habitat-related turbidity, freeze-core sampling to obtain knowledge on fine sediment infiltration and an evaluation of the macroinvertebrate communities as well as fish egg development (salmonid incubation). The results of the sedimentological as well as biological investigations show a negligible impact on the downstream located aquatic system due to the controlled drawdown of the Gepatsch reservoir. In addition, recommendations based on the findings from this study regarding possible methods for local scale monitoring can be given.
  • Thumbnail Image
    ItemOpen Access
    A multi‐parameter approach to quantify riverbed clogging and vertical hyporheic connectivity
    (2023) Negreiros, Beatriz; Aybar Galdos, Alcides; Seitz, Lydia; Noack, Markus; Schwindt, Sebastian; Wieprecht, Silke; Haun, Stefan
    Riverbed clogging is key to assessing vertical connectivity in the hyporheic zone and is often quantified using single-parameter or qualitative approaches. However, clogging is driven by multiple, interacting physical and bio-geochemical parameters, which do not allow for a conclusive assessment of hyporheic connectivity with single-parameter approaches. In addition, existing qualitative assessments lack transparency and repeatability. This study introduces a Multi-Parameter Approach to quantify Clogging and vertical hyporheic connectivity (MultiPAC), which builds on standardized measurements of physical (grain size characteristics, porosity, hydraulic conductivity) and bio-geochemical (interstitial dissolved oxygen) parameters. We apply MultiPAC at three gravel-bed rivers and show how the set of parameters provides a representative appreciation of physical riverbed clogging, thus quantifying vertical hyporheic connectivity. However, more parameters are required to fully characterize biological clogging. In addition, MultiPAC locates clogged layers in the hyporheic zone through multi-parameter vertical profiles over the riverbed depth. The discussion outlines the relevance of MultiPAC to guide field surveys.
  • Thumbnail Image
    ItemOpen Access
    High spatio‐temporal resolution measurements of cohesive sediment erosion
    (2020) Beckers, Felix; Inskeep, Caleb; Haun, Stefan; Schmid, Gerhard; Wieprecht, Silke; Noack, Markus
    In this study, we present a novel approach to measure fundamental processes of cohesive sediment erosion. The experimental setup consists of a laboratory erosion flume (SETEG) and a photogrammetric method to detect sediment erosion (PHOTOSED). Detailed data are presented for three erosion experiments, which were conducted with a natural non‐cohesive/cohesive sediment mixture at increasing sediment depths (4, 8, 16 cm). In each experiment, the sediment was exposed to a set of incrementally increasing shear stresses and the erosion was measured dynamically, pixel‐based, and approximate to the process scale given the resolution of PHOTOSED. This enables us to distinguish between (i) individual emerging erosion spots caused by surface erosion and (ii) large holes torn open by detached aggregate chunks. Moreover, interrelated processes were observed, such as (iii) propagation of the erosion in the longitudinal and lateral direction leading to merging of disconnected erosion areas and (iv) progressive vertical erosion of already affected areas. By complementing the (bulk) erosion volume profiles with additional quantitative variables, which contain spatial information (erosion area, specific deepening, number of disconnected erosion areas), conclusions on the erosion behaviour (and the dominant processes) can be drawn without requiring qualitative information (such as visual observations). In addition, we provide figures indicating the spatio‐temporal erosion variability and the (bulk) erosion rates for selected time periods. We evaluate the variability by statistical quantities and show that significant erosion is mainly confined to only a few events during temporal progression, but then considerably exceeds the time‐averaged median of the erosion (factors between 7.0 and 16.0). Further, we point to uncertainties in using (bulk) erosion rates to assess cohesive sediment erosion and particularly the underlying processes. As a whole, the results emphasise the need to measure cohesive sediment erosion with high spatio‐temporal resolution to obtain reliable and robust information.
  • Thumbnail Image
    ItemOpen Access
    Numerical study of discharge adjustment effects on reservoir morphodynamics and flushing efficiency : an outlook for the Unazuki Reservoir, Japan
    (2021) Esmaeili, Taymaz; Sumi, Tetsuya; Kantoush, Sameh; Kubota, Yoji; Haun, Stefan; Rüther, Nils
    The Unazuki Reservoir is located on the Kurobe River, which is influenced by a catchment with one of the highest sediment yields in Japan. Due to a sufficiently available discharge during flood events, annual sediment flushing with full water-level drawdown (i.e., free-flow sediment flushing) is conducted to preserve the effective storage capacity of the reservoir. Nevertheless, the upstream half of the reservoir (i.e., study segment) suffers from the excessive deposition of coarser sediments. Remobilization of these coarser materials and their transportation further downstream of the reservoir is a priority of reservoir owners for sustainable reservoir functions, such as flood-risk management and hydroelectric energy generation. In this paper, an already conducted sediment-flushing operation in the Unazuki Reservoir is simulated, and its effects on sediment scouring from the study segment of the reservoir together with changes in bed morphodynamics are presented. A fully 3D numerical model using the finite volume approach in combination with a wetting/drying algorithm was utilized to reproduce the hydrodynamics and bed changes using the available onsite data. Afterwards, the effects of discharge adjustment on the morphological bed changes and flushing efficiency were analysed in the study segment using an additional single-discharge pulse supplied from upstream reservoirs. Simulation results showed that an approximately 75% increase in the average discharge during the free-flow stage changed the dominant morphological process from deposition into an erosive mode in the study segment. If the increase in discharge reaches up to 100%, the flushed volume of sediments from the target segment can increase 2.9 times compared with the initiation of the erosive mode.
  • Thumbnail Image
    ItemOpen Access
    Colmation: Unravelling physical interactions of surface and subsurface processes
    (Stuttgart : Universität Stuttgart, Institute for Modelling Hydraulic and Environmental Systems, 2024) Koca, Kaan; Haun, Stefan; Wieprecht, Silke; Noack, Markus
    Colmation, the infiltration and accumulation of fine sediment in gravel riverbeds, is a natural process in riverine ecosystems. However, when excessive amounts of fine sediments are transported into rivers due to human activities (e.g., intensive agriculture, mining), they can substantially clog the pores of the riverbed, reduce its hydraulic conductivity, usually leading to detrimental impacts on water quality and ecological health. Despite extensive research on colmation, considerable knowledge gaps exist regarding the spatio-temporal dynamics and interactions between near-bed and interstitial flow and processes governing colmation. This is mainly due to the lack of measurement methods that can be utilized at pore scale without disturbing the natural environment. To this end, we developed a novel smart sensor capable of monitoring and measuring sediment infiltration and deposition processes within the pores of the gravel bed. The developed sensor was compared to the industry standard gamma-ray computer tomography (Gamma CT), exhibiting good agreement across a range of infiltrating particle sizes, from sand to fine gravel. Flume experiments further demonstrated the reliability of the smart sensor in acquiring spatially-distributed information on sediment deposition dynamics at high temporal resolution and with reproducible results. While persistent technical malfunctions hindered the acquisition of interstitial flow measurements using an endoscopic PIV system, the developed sensor alone provides valuable insights into sediment accumulation processes, making it a promising tool for engineers, geomorphologists, and ecologists. A potential combination of our sensor with pore-scale velocity measurements and/or eddy-resolving simulations can be considered in the future to elucidate the interactions between local flow fields and progressive pore occlusion by fine sediments. In this respect, our contribution does not only fill a critical gap in our ability to non-destructively monitor sediment deposition process in the interstitial pore space, but also offers the potential for supporting development of more realistic, high-resolution numerical models, which are essential for understanding subsurface-surface interactions at larger scales and finally coming up with sustainable management strategies.
  • Thumbnail Image
    ItemOpen Access
    An interdisciplinary model chain quantifies the footprint of global change on reservoir sedimentation
    (2023) Mouris, Kilian; Schwindt, Sebastian; Pesci, María Herminia; Wieprecht, Silke; Haun, Stefan
    Global change alters hydro-climatic conditions, affects land use, and contributes to more frequent droughts and floods. Large artificial reservoirs may effectively alleviate hydro-climatic extremes, but their storage capacities are threatened by sedimentation processes, which in turn are exacerbated by land use change. Envisioning strategies for sustainable reservoir management requires interdisciplinary model chains to emulate key processes driving sedimentation under global change scenarios. Therefore, we introduce a model chain for the long-term prediction of complex three-dimensional (3d) reservoir sedimentation considering concurrent catchment, hydro-climatic, and land-use conditions. Applied to a mountainous Mediterranean catchment, the model chain predicts increased sediment production and decreased discharge for high and medium emission pathways. Increased winter precipitation, accompanied by a transition from snowfall to rainfall, is projected to aggravate reduced summer precipitation, emphasizing a growing need for reservoirs. Additionally, higher winter precipitation proliferates sediment production and reservoir sedimentation. Land use change can outweigh the increased reservoir sedimentation originating from hydro-climatic change, which highlights the significance of localized actions to reduce sediment production. Finally, a 3d hydro-morphodynamic model provides insights into interactions between global change and reservoir sedimentation with spatially explicit information on future sedimentation patterns facilitating the implementation of management strategies.