02 Fakultät Bau- und Umweltingenieurwissenschaften

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/3

Browse

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    ItemOpen Access
    Smooth or with a snap! Biomechanics of trap reopening in the Venus flytrap (Dionaea muscipula)
    (2022) Durak, Grażyna M.; Thierer, Rebecca; Sachse, Renate; Bischoff, Manfred; Speck, Thomas; Poppinga, Simon
    Fast snapping in the carnivorous Venus flytrap (Dionaea muscipula) involves trap lobe bending and abrupt curvature inversion (snap‐buckling), but how do these traps reopen? Here, the trap reopening mechanics in two different D. muscipula clones, producing normal‐sized (N traps, max. ≈3 cm in length) and large traps (L traps, max. ≈4.5 cm in length) are investigated. Time‐lapse experiments reveal that both N and L traps can reopen by smooth and continuous outward lobe bending, but only L traps can undergo smooth bending followed by a much faster snap‐through of the lobes. Additionally, L traps can reopen asynchronously, with one of the lobes moving before the other. This study challenges the current consensus on trap reopening, which describes it as a slow, smooth process driven by hydraulics and cell growth and/or expansion. Based on the results gained via three‐dimensional digital image correlation (3D‐DIC), morphological and mechanical investigations, the differences in trap reopening are proposed to stem from a combination of size and slenderness of individual traps. This study elucidates trap reopening processes in the (in)famous Dionaea snap traps - unique shape‐shifting structures of great interest for plant biomechanics, functional morphology, and applications in biomimetics, i.e., soft robotics.
  • Thumbnail Image
    ItemOpen Access
    Magnetic putty as a reconfigurable, recyclable, and accessible soft robotic material
    (2023) Li, Meng; Pal, Aniket; Byun, Junghwan; Gardi, Gaurav; Sitti, Metin
    Magnetically hard materials are widely used to build soft magnetic robots, providing large magnetic force/torque and macrodomain programmability. However, their high magnetic coercivity often presents practical challenges when attempting to reconfigure magnetization patterns, requiring a large magnetic field or heating. In this study, magnetic putty is introduced as a magnetically hard and soft material with large remanence and low coercivity. It is shown that the magnetization of magnetic putty can be easily reoriented with maximum magnitude using an external field that is only one‐tenth of its coercivity. Additionally, magnetic putty is a malleable, autonomous self‐healing material that can be recycled and repurposed. The authors anticipate magnetic putty could provide a versatile and accessible tool for various magnetic robotics applications for fast prototyping and explorations for research and educational purposes.
  • Thumbnail Image
    ItemOpen Access
    Investigations into the opening of fractures during hydraulic testing using a hybrid-dimensional flow formulation
    (2021) Schmidt, Patrick; Steeb, Holger; Renner, Jörg
    We applied a hybrid-dimensional flow model to pressure transients recorded during pumping experiments conducted at the Reiche Zeche underground research laboratory to study the opening behavior of fractures due to fluid injection. Two distinct types of pressure responses to flow-rate steps were identified that represent radial-symmetric and plane-axisymmetric flow regimes from a conventional pressure-diffusion perspective. We numerically modeled both using a radial-symmetric flow formulation for a fracture that comprises a non-linear constitutive relation for the contact mechanics governing reversible fracture surface interaction. The two types of pressure response can be modeled equally well. A sensitivity study revealed a positive correlation between fracture length and normal fracture stiffness that yield a match between field observations and numerical results. Decomposition of the acting normal stresses into stresses associated with the deformation state of the global fracture geometry and with the local contacts indicates that geometrically induced stresses contribute the more the lower the total effective normal stress and the shorter the fracture. Separating the contributions of the local contact mechanics and the overall fracture geometry to fracture normal stiffness indicates that the geometrical stiffness constitutes a lower bound for total stiffness; its relevance increases with decreasing fracture length. Our study demonstrates that non-linear hydro-mechanical coupling can lead to vastly different hydraulic responses and thus provides an alternative to conventional pressure-diffusion analysis that requires changes in flow regime to cover the full range of observations.
  • Thumbnail Image
    ItemOpen Access
    Optimality principles in human point-to-manifold reaching accounting for muscle dynamics
    (2020) Wochner, Isabell; Driess, Danny; Zimmermann, Heiko; Häufle, Daniel F. B.; Toussaint, Marc; Schmitt, Syn
    Human arm movements are highly stereotypical under a large variety of experimental conditions. This is striking due to the high redundancy of the human musculoskeletal system, which in principle allows many possible trajectories toward a goal. Many researchers hypothesize that through evolution, learning, and adaption, the human system has developed optimal control strategies to select between these possibilities. Various optimality principles were proposed in the literature that reproduce human-like trajectories in certain conditions. However, these studies often focus on a single cost function and use simple torque-driven models of motion generation, which are not consistent with human muscle-actuated motion. The underlying structure of our human system, with the use of muscle dynamics in interaction with the control principles, might have a significant influence on what optimality principles best model human motion. To investigate this hypothesis, we consider a point-to-manifold reaching task that leaves the target underdetermined. Given hypothesized motion objectives, the control input is generated using Bayesian optimization, which is a machine learning based method that trades-off exploitation and exploration. Using numerical simulations with Hill-type muscles, we show that a combination of optimality principles best predicts human point-to-manifold reaching when accounting for the muscle dynamics.
  • Thumbnail Image
    ItemOpen Access
    Giraffes and hominins: reductionist model predictions of compressive loads at the spine base for erect exponents of the animal kingdom
    (2021) Günther, Michael; Mörl, Falk
    In humans, compressive stress on intervertebral discs is commonly deployed as a measurand for assessing the loads that act within the spine. Examining this physical quantity is crucially beneficial: the intradiscal pressure can be directly measured in vivo in humans, and is immediately related to compressive stress. Hence, measured intradiscal pressure data are utterly useful for validating such biomechanical animal models that have the spine incorporated, and can, thus, compute compressive stress values. Here, we utilise human intradiscal pressure data to verify the predictions of a reductionist spine model, which has in fact only one joint degree of freedom. We calculate the pulling force of one lumped anatomical structure that acts past this (intervertebral) joint at the base of the spine - lumbar in hominins, cervical in giraffes - to compensate the torque that is induced by the weight of all masses located cranially to the base. Given morphometric estimates of the human and australopith trunks, respectively, and the giraffe's neck, as well as the respective structures' lever arms and disc areas, we predict, for all three species, the compressive stress on the intervertebral disc at the spine base, while systematically varying the angular orientation of the species' spinal columns with respect to gravity. The comparison between these species demonstrates that hominin everyday compressive disc stresses are lower than such in big quadrupedal animals. Within each species, erecting the spine from being bent forward by, for example, thirty degrees to fully upright posture reduces the compressive disc stress roughly to a third. We conclude that erecting the spine immediately allows to carry extra loads of the order of body weight, and yet the compressive disc stress is lower than in a moderately forward-bent posture with none extra load.
  • Thumbnail Image
    ItemOpen Access
    Improving efficiency and robustness of enhanced assumed strain elements for nonlinear problems
    (2021) Pfefferkorn, Robin; Bieber, Simon; Oesterle, Bastian; Bischoff, Manfred; Betsch, Peter
    The enhanced assumed strain (EAS) method is one of the most frequently used methods to avoid locking in solid and structural finite elements. One issue of EAS elements in the context of geometrically nonlinear analyses is their lack of robustness in the Newton-Raphson scheme, which is characterized by the necessity of small load increments and large number of iterations. In the present work we extend the recently proposed mixed integration point (MIP) method to EAS elements in order to overcome this drawback in numerous applications. Furthermore, the MIP method is generalized to generic material models, which makes this simple method easily applicable for a broad class of problems. In the numerical simulations in this work, we compare standard strain‐based EAS elements and their MIP improved versions to elements based on the assumed stress method in order to explain when and why the MIP method allows to improve robustness. A further novelty in the present work is an inverse stress‐strain relation for a Neo‐Hookean material model.
  • Thumbnail Image
    ItemOpen Access
    Combining membrane and zero brine technologies in waste acid treatment for a circular economy in the hot-dip galvanizing industry : a life cycle perspective
    (2023) Lorenz, Manuel; Seitfudem, Georg; Randazzo, Serena; Gueccia, Rosa; Gehring, Florian; Prenzel, Tobias M.
    An innovative approach of combining membrane and zero brine technologies for a joint treatment of industrial liquid waste is investigated regarding its environmental impacts compared to the existing liquid waste treatment. The object of investigation is the generation of waste acid solution by a hot dip galvanizing plant in Sicily, Italy. The waste acid solution contains hydrochloric acid, iron and zinc, which makes it a hazardous waste according to EU classifications. Environmental impacts are studied for two scenarios in the Tecnozinco hot-dip galvanizing plant in Sicily, Italy: (i) the current process of pickling with linear disposal of waste acid and (ii) the pickling combined with in-situ treatment of the waste acid using a combination of diffusion dialysis (DD), membrane distillation (MD) and a precipitation reactor. Results are obtained via an attributional life cycle assessment (LCA) approach focusing on the water footprint profile of the process. The linear disposal path creates significant costs, environmental burdens and risks during the 1500 km transport of hazardous liquid waste. The combination of DD and MD, complemented with a zero-brine precipitation reactor, closes internal material loops, could save local water resources and reduces costs as well as environmental impacts. Reduction potentials of 70-80% regarding most LCA impact categories can be expected for the application of the novel technology combination supporting the galvanizing pre-treatment process under study. Therefore, the application of such technology on the way forward to a more circular economy is recommended from an environmental viewpoint, especially in process plants similar to the investigated one.