02 Fakultät Bau- und Umweltingenieurwissenschaften

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/3

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    Combining membrane and zero brine technologies in waste acid treatment for a circular economy in the hot-dip galvanizing industry : a life cycle perspective
    (2023) Lorenz, Manuel; Seitfudem, Georg; Randazzo, Serena; Gueccia, Rosa; Gehring, Florian; Prenzel, Tobias M.
    An innovative approach of combining membrane and zero brine technologies for a joint treatment of industrial liquid waste is investigated regarding its environmental impacts compared to the existing liquid waste treatment. The object of investigation is the generation of waste acid solution by a hot dip galvanizing plant in Sicily, Italy. The waste acid solution contains hydrochloric acid, iron and zinc, which makes it a hazardous waste according to EU classifications. Environmental impacts are studied for two scenarios in the Tecnozinco hot-dip galvanizing plant in Sicily, Italy: (i) the current process of pickling with linear disposal of waste acid and (ii) the pickling combined with in-situ treatment of the waste acid using a combination of diffusion dialysis (DD), membrane distillation (MD) and a precipitation reactor. Results are obtained via an attributional life cycle assessment (LCA) approach focusing on the water footprint profile of the process. The linear disposal path creates significant costs, environmental burdens and risks during the 1500 km transport of hazardous liquid waste. The combination of DD and MD, complemented with a zero-brine precipitation reactor, closes internal material loops, could save local water resources and reduces costs as well as environmental impacts. Reduction potentials of 70-80% regarding most LCA impact categories can be expected for the application of the novel technology combination supporting the galvanizing pre-treatment process under study. Therefore, the application of such technology on the way forward to a more circular economy is recommended from an environmental viewpoint, especially in process plants similar to the investigated one.
  • Thumbnail Image
    ItemOpen Access
    Ökobilanz für die Bioprozessoptimierung : Herstellung des Biotensids MEL
    (2024) Bippus, Lars; Briem, Ann-Kathrin; Beck, Alexander; Zibek, Susanne; Albrecht, Stefan
    This study evaluates the environmental impacts of producing mannosylerythritol lipids (MELs) using life cycle assessment (LCA) and kinetic models. MELs are microbial biosurfactants with various applications produced from biobased sources. The LCA results indicate that substrate provision, bioreactor aeration and solvent use for purification are major environmental impact sources. The findings highlight areas for improving the environmental sustainability of the production processes.