02 Fakultät Bau- und Umweltingenieurwissenschaften
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/3
Browse
4 results
Search Results
Item Open Access Designing actuation concepts for adaptive slabs with integrated fluidic actuators using influence matrices(2022) Nitzlader, Markus; Steffen, Simon; Bosch, Matthias J.; Binz, Hansgeorg; Kreimeyer, Matthias; Blandini, LucioPrevious work has shown that floor slabs make up most of the material mass of building structures and are typically made of reinforced concrete. Considering the associated resource consumption and greenhouse gas emissions, new approaches are needed in order to reduce the built environment’s impact on the ongoing climate crisis. Various studies have demonstrated that adaptive building structures offer a potential solution for reducing material resource consumption and associated emissions. Adaptive structures have the ability to improve load-bearing performance by specifically reacting to external loads. This work applies the concept of adaptive structures to reinforced concrete slabs through the integration of fluidic actuators into the cross-section. The optimal integration of actuators in reinforced concrete slabs is a challenging interdisciplinary design problem that involves many parameters. In this work, actuation influence matrices are extended to slabs and used as an analysis and evaluation tool for deriving actuation concepts for adaptive slabs with integrated fluidic actuators. To define requirements for the actuator concept, a new procedure for the selection of actuation modes, actuator placement and the computation of actuation forces is developed. This method can also be employed to compute the required number of active elements for a given load case. The new method is highlighted in a case study of a 2 m × 2 m floor.Item Open Access Using influence matrices as a design and analysis tool for adaptive truss and beam structures(2020) Steffen, Simon; Weidner, Stefanie; Blandini, Lucio; Sobek, WernerDue to the already high and still increasing resource consumption of the building industry, the imminent scarcity of certain building materials and the occurring climate change, new resource- and emission-efficient building technologies need to be developed. This need for new technologies is further amplified by the continuing growth of the human population. One possible solution proposed by researchers at the University of Stuttgart, and which is currently further examined in the context of the Collaborative Research Centre (SFB) 1244 Adaptive Skins and Structures for the Built Environment of Tomorrow is that of adaptivity. The integration of sensors, actuators, and a control unit enables structures to react specifically to external loads, when needed (e.g., in the case of high but rare loads). For example, adaptivity in load-bearing structures allows for a reduction of deflections or a homogenization of stresses. This in its turn allows for ultra-lightweight structures with significantly reduced material consumption and emissions. To reach ultra-lightweight structures, i.e., adaptive load-bearing structures, two key questions need to be answered. First, the question of optimal actuator placement and, second, which type of typology (truss, frame, etc.) is most effective. One approach for finding the optimal configuration is that of the so-called influence matrices. Influence matrices, as introduced in this paper, are a type of sensitivity matrix, which describe how and to which extend various properties of a given load-bearing structure can be influenced by different types of actuation principles. The method of influence matrices is exemplified by a series of studies on different configurations of a truss structure.Item Open Access Ableitung von Typologien adaptiver Hochhausstabtragwerke mittels der Methode der Einflussmatrizen(2023) Steffen, Simon; Sobek, Werner (Prof. Dr.-Ing. Dr.-Ing. E.h. Dr. h.c.)Im Jahr 2015 haben 194 Länder und die Europäische Union im Pariser Klimaabkommen vereinbart, die Erderwärmung auf 1,5 °C zu beschränken. Um dies zu erreichen, müssen unter anderem alle produzierenden Industrien eine erhebliche Transformation umsetzen, um Produktion und Produkte nachhaltiger zu gestalten. Eine tragende Rolle kommt hierbei dem Bauwesen zu, da es für etwa die Hälfte der weltweiten Treibhausgas-Emissionen und ca. die Hälfte der weltweiten Energieaufwendung verantwortlich ist. Weiterhin führt der hohe Ressourcenverbrauch des Bauwesens zu einer Verknappung von wichtigen Baumaterialien, die zudem noch ungenügend rezykliert werden. In Verbindung mit der global wachsenden Bevölkerung und dem steigendem Wohlstand in den sogenannten „Entwicklungsländern“ wird deutlich, dass neue Technologien, Entwurfsmethoden und Tragwerkstypologien erforderlich sind, um die Umweltwirkung des Bauwesens zu verringern und das Pariser Klimaziel einzuhalten. Die vorliegende Arbeit greift den Lösungsansatz adaptiver Tragwerke auf. Adaptive Tragwerke sind mit Sensoren, Aktoren und Regelungseinheiten ausgestattet. Diese ermöglichen es, auf Basis einer hinterlegten Regelung das Tragverhalten der Tragwerke mechanisch an die aktuelle Belastungssituation anzupassen. Wird diese Anpassungsfähigkeit genutzt, um gezielt Beanspruchungszustände zu optimieren oder aktiv Verformungen zu reduzieren, können im Tragwerk Material und Emissionen eingespart werden. Der Fokus der Arbeit liegt auf adaptiven Hochhausstabtragwerken, da Hochhäuser eine mögliche Antwort auf die zunehmende Urbanisierung darstellen, sodass eine weitflächige Ausdehnung der Städte und die damit verbundene hohe Flächenversiegelung vermieden werden kann. Das Ziel dieser Arbeit ist die Ableitung von Typologien adaptiver Hochhausstabtragwerke, die zu Materialeinsparungen gegenüber konventionellen Tragwerken führen. Eine Bilanzierung der Emissionen erfolgt in dieser Arbeit nicht. Hieraus leiten sich die folgenden Forschungsfragen ab: • Was ist das Entwurfsproblem konventioneller passiver Hochhaustragwerke? Ermöglicht eine Adaption Materialeinsparungen? • Welches Aktuierungsziel führt bei Hochhaustragwerken zu Materialeinsparungen? Was ist das Entwurfsproblem adaptiver Hochhaustragwerke? • Mit welchem Aktuierungskonzept kann das Aktuierungsziel in unterschiedlichen Tragwerkstypologien erreicht werden? • In welcher Größenordnung liegen die potenziellen Materialeinsparungen? Die Beantwortung der Fragen erfolgt anhand von Literaturrecherchen sowie mit Hilfe von analytischer und numerischer Untersuchungen. Nach einer qualitativen Herleitung des primären Aktuierungsziels einer Verformungsadaption werden Aktuierungskonzepte für ausgewählte Hochhausstabtragwerkstypologien erarbeitet. Im ersten Schritt wird mithilfe von Einflussmatrizen die inhärente Adaptierbarkeit von vier Aussteifungsmodulen analysiert. Die mit Hilfe von verschiedener Aktuierungsprinzipien erzeugbaren Verformungsfiguren und zugehörigen Schnittgrößenverläufe werden untersucht und erklärt. Anschließend werden die Grundmodule zu abstrahierten Aussteifungssystemen zusammengesetzt und das Anwendungspotenzial unterschiedlicher Aktuierungskonzepte diskutiert. Im nächsten Schritt werden unterschiedliche Möglichkeiten erörtert, mit Hilfe derer die abstrahierten Aussteifungssysteme zu Hochhaustragwerken erweitert werden können. Auf dieser Basis wird als Viertes das Adaptionspotenzial ausgewählter konventioneller Hochhausstabtragwerkstypologien eingeordnet und neue Typologien abgeleitet. Abschließend werden für die untersuchten Hochhausstabtragwerkstypologien anhand von numerischen Parameterstudien die Materialeinsparungspotenziale abgeschätzt und die abgeleiteten Aktuierungskonzepte und Typologien simulativ validiert. Die Arbeit zeigt, dass Materialeinsparungen in erster Linie erzielt werden, wenn in der Bemessung des passiven Tragwerks ein Steifigkeitsproblem vorliegt. Je maßgebender das Steifigkeitsproblem, desto größer das Einsparungspotenzial durch Adaption, welches mit einer zunehmenden Schlankheit des Aussteifungssystems korrespondiert. Zwei grundlegende Aktuierungskonzepte werden entwickelt. Im ersten Aktuierungskonzept erfolgt die Verformungsadaption beanspruchungsfrei. Im zweiten Aktuierungskonzept ist die Verformungsadaption an eine Beanspruchungsmanipulation gekoppelt, welche zusätzliche Materialeinsparungen ermöglichen kann. Welches Aktuierungskonzept eingesetzt werden sollte, hängt von der Hochhaustragwerkstypologie ab und kann von dessen passivem Tragverhalten abgeleitet werden. Insgesamt kann aufgewiesen werden, dass eine mechanische Adaption von Hochhaustragwerken signifikante Materialeinsparungen ermöglicht und somit eine sinnvolle Lösung zur Reduktion der Umweltwirkung des Bauwesens darstellt, speziell in Anbetracht der zunehmenden Urbanisierung.Item Open Access An actuator concept for adaptive concrete columns(2021) Steffen, Simon; Nitzlader, Markus; Burghardt, Timon; Binz, Hansgeorg; Blandini, Lucio; Sobek, WernerThe building industry accounts for half of the global resource consumption and roughly one third of global CO2 emissions. Global population growth and increasing resource scarcities require engineers and architects to build for more people with less material and emissions. One promising solution are adaptive load-bearing structures. Here, the load-bearing structure is equipped with actuators, sensors, and a control unit which allows the structure to adapt to different load cases, resulting in substantial material savings. While the first prototypes use industry standard actuators to manipulate deformations and stress states, it is essential to develop actuator concepts which fit the specific requirements of civil engineering structures. This paper introduces new concepts for linear actuators, developed within the Collaborative Research Centre (SFB) 1244 Adaptive Skins and Structures for the Built Environment of Tomorrow, which can be used as adaptive concrete columns. The concept of an actuator which actuates a concrete column by external compression through hydraulic pressure is discussed in further detail. This concept allows for controlled axial extension while also increasing the compressive strength of the concrete column.