02 Fakultät Bau- und Umweltingenieurwissenschaften
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/3
Browse
45 results
Search Results
Item Open Access Multiphasic modelling and computation of metastatic lung-cancer cell proliferation and atrophy in brain tissue based on experimental data(2021) Ehlers, Wolfgang; Rehm, Markus; Schröder, Patrick; Stöhr, Daniela; Wagner, ArndtCancer is one of the most serious diseases for human beings, especially when metastases come into play. In the present article, the example of lung-cancer metastases in the brain is used to discuss the basic problem of cancer growth and atrophy as a result of both nutrients and medication. As the brain itself is a soft tissue that is saturated by blood and interstitial fluid, the biomechanical description of the problem is based on the Theory of Porous Media enhanced by the results of medication tests carried out in in-vitro experiments on cancer-cell cultures. Based on theoretical and experimental results, the consideration of proliferation, necrosis and apoptosis of metastatic cancer cells is included in the description by so-called mass-production terms added to the mass balances of the brain skeleton and the interstitial fluid. Furthermore, the mass interaction of nutrients and medical drugs between the solid and the interstitial fluid and its influence on proliferation, necrosis and apoptosis of cancer cells are considered. As a result, the overall model is appropriate for the description of brain tumour treatment combined with stress and deformation induced by cancer growth in the skull.Item Open Access Effects of enzymatically induced carbonate precipitation on capillary pressure : saturation relations(2022) Hommel, Johannes; Gehring, Luca; Weinhardt, Felix; Ruf, Matthias; Steeb, HolgerLeakage mitigation methods are an important part of reservoir engineering and subsurface fluid storage, in particular. In the context of multi-phase systems of subsurface storage, e.g., subsurface CO2 storage, a reduction in the intrinsic permeability is not the only parameter to influence the potential flow or leakage; multi-phase flow parameters, such as relative permeability and capillary pressure, are key parameters that are likely to be influenced by pore-space reduction due to leakage mitigation methods, such as induced precipitation. In this study, we investigate the effects of enzymatically induced carbonate precipitation on capillary pressure-saturation relations as the first step in accounting for the effects of induced precipitation on multi-phase flow parameters. This is, to our knowledge, the first exploration of the effect of enzymatically induced carbonate precipitation on capillary pressure-saturation relations thus far. First, pore-scale resolved microfluidic experiments in 2D glass cells and 3D sintered glass-bead columns were conducted, and the change in the pore geometry was observed by light microscopy and micro X-ray computed tomography, respectively. Second, the effects of the geometric change on the capillary pressure-saturation curves were evaluated by numerical drainage experiments using pore-network modeling on the pore networks extracted from the observed geometries. Finally, parameters of both the Brooks-Corey and Van Genuchten relations were fitted to the capillary pressure-saturation curves determined by pore-network modeling and compared with the reduction in porosity as an average measure of the pore geometry’s change due to induced precipitation. The capillary pressures increased with increasing precipitation and reduced porosity. For the 2D setups, the change in the parameters of the capillary pressure-saturation relation was parameterized. However, for more realistic initial geometries of the 3D samples, while the general patterns of increasing capillary pressure may be observed, such a parameterization was not possible using only porosity or porosity reduction, likely due to the much higher variability in the pore-scale distribution of the precipitates between the experiments. Likely, additional parameters other than porosity will need to be considered to accurately describe the effects of induced carbonate precipitation on the capillary pressure-saturation relation of porous media.Item Open Access Darcy, Forchheimer, Brinkman and Richards : classical hydromechanical equations and their significance in the light of the TPM(2020) Ehlers, WolfgangIn hydromechanical applications, Darcy, Brinkman, Forchheimer and Richards equations play a central role when porous media flow under saturated and unsaturated conditions has to be investigated. While Darcy, Brinkman, Forchheimer and Richards found their equations mainly on the basis of flow observations in field and laboratory experiments, the modern Theory of Porous Media allows for a scientific view at these equations on the basis of precise continuum mechanical and thermodynamical investigations. The present article aims at commenting the classical equations and at deriving their counterparts by the use of the thermodynamical consistent Theory of Porous Media. This procedure will prove that the classical equations are valid under certain restrictions and that extended equations exist valid for arbitrary cases in their field.Item Open Access The role of parvalbumin, sarcoplasmatic reticulum calcium pump rate, rates of cross-bridge dynamics, and ryanodine receptor calcium current on peripheral muscle fatigue: a simulation study(2016) Röhrle, Oliver; Neumann, Verena; Heidlauf, ThomasItem Open Access A mesh‐in‐element method for the theory of porous media(2024) Maike, S.; Schröder, J.; Bluhm, J.; Ricken, T.While direct homogenisation approaches such as the FE method are subject to the assumption of scale separation, the mesh‐in‐element (MIEL) approach is based on an approach with strong scale coupling, which is based on a discretization with finite elements. In this contribution we propose a two‐scale MIEL scheme in the framework of the theory of porous media (TPM). This work is a further development of the MIEL method which is based on the works of the authors A. Ibrahimbegovic, R.L. Taylor, D. Markovic, H.G. Matthies, R. Niekamp (in alphabetical order); where we find the physical and mathematical as well as the software coupling implementation aspects of the multi‐scale modeling of heterogeneous structures with inelastic constitutive behaviour, see for example, [Eng Comput, 2005;22(5‐6):664‐683.] and [Eng Comput , 2009;26(1/2):6‐28.]. Within the scope of this contribution, the necessary theoretical foundations of TPM are provided and the special features of the algorithmic implementation in the context of the MIEL method are worked out. Their fusion is investigated in representative numerical examples to evaluate the characteristics of this approach and to determine its range of application.Item Open Access Patient‐specific simulation of brain tumour growth and regression(2023) Suditsch, Marlon; Ricken, Tim; Wagner, ArndtThe medical relevance of brain tumours is characterised by its locally invasive and destructive growth. With a high mortality rate combined with a short remaining life expectancy, brain tumours are identified as highly malignant. A continuum‐mechanical model for the description of the governing processes of growth and regression is derived in the framework of the Theory of Porous Media (TPM). The model is based on medical multi‐modal magnetic resonance imaging (MRI) scans, which represent the gold standard in diagnosis. The multi‐phase model is described mathematically via strongly coupled partial differential equations. This set of governing equations is transformed into their weak formulation and is solved with the software package FEniCS. A proof‐of‐concept simulation based on one patient geometry and tumour pathology shows the relevant processes of tumour growth and the results are discussed.Item Open Access Magnetic putty as a reconfigurable, recyclable, and accessible soft robotic material(2023) Li, Meng; Pal, Aniket; Byun, Junghwan; Gardi, Gaurav; Sitti, MetinMagnetically hard materials are widely used to build soft magnetic robots, providing large magnetic force/torque and macrodomain programmability. However, their high magnetic coercivity often presents practical challenges when attempting to reconfigure magnetization patterns, requiring a large magnetic field or heating. In this study, magnetic putty is introduced as a magnetically hard and soft material with large remanence and low coercivity. It is shown that the magnetization of magnetic putty can be easily reoriented with maximum magnitude using an external field that is only one‐tenth of its coercivity. Additionally, magnetic putty is a malleable, autonomous self‐healing material that can be recycled and repurposed. The authors anticipate magnetic putty could provide a versatile and accessible tool for various magnetic robotics applications for fast prototyping and explorations for research and educational purposes.Item Open Access Investigations into the opening of fractures during hydraulic testing using a hybrid-dimensional flow formulation(2021) Schmidt, Patrick; Steeb, Holger; Renner, JörgWe applied a hybrid-dimensional flow model to pressure transients recorded during pumping experiments conducted at the Reiche Zeche underground research laboratory to study the opening behavior of fractures due to fluid injection. Two distinct types of pressure responses to flow-rate steps were identified that represent radial-symmetric and plane-axisymmetric flow regimes from a conventional pressure-diffusion perspective. We numerically modeled both using a radial-symmetric flow formulation for a fracture that comprises a non-linear constitutive relation for the contact mechanics governing reversible fracture surface interaction. The two types of pressure response can be modeled equally well. A sensitivity study revealed a positive correlation between fracture length and normal fracture stiffness that yield a match between field observations and numerical results. Decomposition of the acting normal stresses into stresses associated with the deformation state of the global fracture geometry and with the local contacts indicates that geometrically induced stresses contribute the more the lower the total effective normal stress and the shorter the fracture. Separating the contributions of the local contact mechanics and the overall fracture geometry to fracture normal stiffness indicates that the geometrical stiffness constitutes a lower bound for total stiffness; its relevance increases with decreasing fracture length. Our study demonstrates that non-linear hydro-mechanical coupling can lead to vastly different hydraulic responses and thus provides an alternative to conventional pressure-diffusion analysis that requires changes in flow regime to cover the full range of observations.Item Open Access Spatiotemporal distribution of precipitates and mineral phase transition during biomineralization affect porosity-permeability relationships(2022) Weinhardt, Felix; Deng, Jingxuan; Hommel, Johannes; Vahid Dastjerdi, Samaneh; Gerlach, Robin; Steeb, Holger; Class, HolgerEnzymatically induced calcium carbonate precipitation is a promising geotechnique with the potential, for example, to seal leakage pathways in the subsurface or to stabilize soils. Precipitation of calcium carbonate in a porous medium reduces the porosity and, consequently, the permeability. With pseudo-2D microfluidic experiments, including pressure monitoring and, for visualization, optical microscopy and X-ray computed tomography, pore-space alterations were reliably related to corresponding hydraulic responses. The study comprises six experiments with two different pore structures, a simple, quasi-1D structure, and a 2D structure. Using a continuous injection strategy with either constant or step-wise reduced flow rates, we identified key mechanisms that significantly influence the relationship between porosity and permeability. In the quasi-1D structure, the location of precipitates is more relevant to the hydraulic response (pressure gradients) than the overall porosity change. In the quasi-2D structure, this is different, because flow can bypass locally clogged regions, thus leading to steadier porosity-permeability relationships. Moreover, in quasi-2D systems, during continuous injection, preferential flow paths can evolve and remain open. Classical porosity-permeability power-law relationships with constant exponents cannot adequately describe this phenomenon. We furthermore observed coexistence and transformation of different polymorphs of calcium carbonate, namely amorphous calcium carbonate, vaterite, and calcite and discuss their influence on the observed development of preferential flow paths. This has so far not been accounted for in the state-of-the-art approaches for porosity–permeability relationships during calcium carbonate precipitation in porous media.Item Open Access Comparing methods for permeability computation of porous materials and their limitations(2023) Krach, David; Steeb, HolgerEfficient numerical simulations of fluid flow on the pore scale allow for the numerical estimation of effective material properties of porous media, e.g. intrinsic permeability or tortuosity. These parameters are essential for various applications where hydro‐mechanical properties on larger scales have to be known. Numerical tools based intrinsically on pore scale simulations are known e.g. as Digital Rock Physics in geosciences and have even more and more replaced physical experiments. For these reasons, the validation of numerical methods as well as the establishment of clear limits regarding the application areas play an important role. Here, we compute single‐phase flow through a porous matrix, e.g. irregular sphere packings, sandstones, artificially created thin porous media, on the pore scale. Therefore we implement on the one hand a Smoothed Particle Hydrodynamics algorithm for solving the Navier‐Stokes equations and on the other hand a Finite Difference solver for the Stokes equations. Both methods work directly and seamlessly on voxel data of porous materials which are generated by µXRCT‐scans or by microfluidic experiments that have undergone segmentation and binarization. We compare both solvers from a parallel performance point of view as well as their results for flows in the Darcy regime. In addition, we investigate the limitations of the solvers using the example of a porous material whose pore geometry changes over time and precipitation affects the flow conditions.