02 Fakultät Bau- und Umweltingenieurwissenschaften

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/3

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    ItemOpen Access
    Multiscale modeling and stability analysis of soft active materials : from electro- and magneto-active elastomers to polymeric hydrogels
    (Stuttgart : Institute of Applied Mechanics, 2023) Polukhov, Elten; Keip, Marc-André (Prof. Dr.-Ing.)
    This work is dedicated to modeling and stability analysis of stimuli-responsive, soft active materials within a multiscale variational framework. In particular, composite electro- and magneto-active polymers and polymeric hydrogels are under consideration. When electro- and magneto-active polymers (EAP and MAP) are fabricated in the form of composites, they comprise at least two phases: a polymeric matrix and embedded electric or magnetic particles. As a result, the obtained composite is soft, highly stretchable, and fracture resistant like polymer and undergoes stimuli-induced deformation due to the interaction of particles. By designing the microstructure of EAP or MAP composites, a compressive or a tensile deformation can be induced under electric or magnetic fields, and also coupling response of the composite can be enhanced. Hence, these materials have found applications as sensors, actuators, energy harvesters, absorbers, and soft, programmable, smart devices in various areas of engineering. Similarly, polymeric hydrogels are also stimuli-responsive materials. They undergo large volumetric deformations due to the diffusion of a solvent into the polymer network of hydrogels. In this case, the obtained material shows the characteristic behavior of polymer and solvent. Therefore, these materials can also be considered in the form of composites to enhance the response further. Since hydrogels are biocompatible materials, they have found applications as contact lenses, wound dressings, drug encapsulators and carriers in bio-medicine, among other similar applications of electro- and magneto-active polymers. All above mentioned favorable features of these materials, as well as their application possibilities, make it necessary to develop mathematical models and numerical tools to simulate the response of them in order to design pertinent microstructures for particular applications as well as understand the observed complex patterns such as wrinkling, creasing, snapping, localization or pattern transformations, among others. These instabilities are often considered as failure points of materials. However, many recent works take advantage of instabilities for smart applications. Investigation of these instabilities and prediction of their onset and mode are some of the main goals of this work. In this sense, the thesis is organized into three main parts. The first part is devoted to the state of the art in the development, fabrication, and modeling of soft active materials as well as the continuum mechanical description of the magneto-electro-elasticity. The second part is dedicated to multiscale instabilities in electro- and magneto-active polymer composites within a minimization-type variational homogenization setting. This means that the highly heterogeneous problem is not resolved on one scale due to computational inefficiency but is replaced by an equivalent homogeneous problem. The effective response of the macroscopic homogeneous problem is determined by solving a microscopic representative volume element which includes all the geometrical and material non-linearities. To bridge these two scales, the Hill-Mandel macro-homogeneity condition is utilized. Within this framework, we investigate both macroscopic and microscopic instabilities. The former are important not only from a physical point of view but also from a computational point of view since the macroscopic stability (strong ellipticity) is necessary for the existence of minimizers at the macroscopic scale. Similarly, the investigation of the latter instabilities are also important to determine the pattern transformations at the microscale due to external action. Thereby the critical domain of homogenization is also determined for computation of accurate effective results. Both investigations are carried out for various composite microstructures and it is found that they play a crucial role in the response of the materials. Therefore, they must be considered for designing EAP and MAP composites as well as for providing reliable computations. The third part of the thesis is dedicated to polymeric hydrogels. Here, we develop a minimization-based homogenization framework to determine the response of transient periodic hydrogel systems. We demonstrate the prevailing size effect as a result of a transient microscopic problem, which has been investigated for various microstructures. Exploiting the elements of the proposed framework, we explore the material and structural instabilities in single and two-phase hydrogel systems. Here, we have observed complex experimentally observed and novel 2D pattern transformations such as diamond-plate patterns coupled with and without wrinkling of internal surfaces for perforated microstructures and 3D pattern transformations in thin reinforced hydrogel composites. The results indicate that the obtained patterns can be controlled by tuning the material and geometrical parameters of the composite.
  • Thumbnail Image
    ItemOpen Access
    Magnetic putty as a reconfigurable, recyclable, and accessible soft robotic material
    (2023) Li, Meng; Pal, Aniket; Byun, Junghwan; Gardi, Gaurav; Sitti, Metin
    Magnetically hard materials are widely used to build soft magnetic robots, providing large magnetic force/torque and macrodomain programmability. However, their high magnetic coercivity often presents practical challenges when attempting to reconfigure magnetization patterns, requiring a large magnetic field or heating. In this study, magnetic putty is introduced as a magnetically hard and soft material with large remanence and low coercivity. It is shown that the magnetization of magnetic putty can be easily reoriented with maximum magnitude using an external field that is only one‐tenth of its coercivity. Additionally, magnetic putty is a malleable, autonomous self‐healing material that can be recycled and repurposed. The authors anticipate magnetic putty could provide a versatile and accessible tool for various magnetic robotics applications for fast prototyping and explorations for research and educational purposes.
  • Thumbnail Image
    ItemOpen Access
    Investigations into the opening of fractures during hydraulic testing using a hybrid-dimensional flow formulation
    (2021) Schmidt, Patrick; Steeb, Holger; Renner, Jörg
    We applied a hybrid-dimensional flow model to pressure transients recorded during pumping experiments conducted at the Reiche Zeche underground research laboratory to study the opening behavior of fractures due to fluid injection. Two distinct types of pressure responses to flow-rate steps were identified that represent radial-symmetric and plane-axisymmetric flow regimes from a conventional pressure-diffusion perspective. We numerically modeled both using a radial-symmetric flow formulation for a fracture that comprises a non-linear constitutive relation for the contact mechanics governing reversible fracture surface interaction. The two types of pressure response can be modeled equally well. A sensitivity study revealed a positive correlation between fracture length and normal fracture stiffness that yield a match between field observations and numerical results. Decomposition of the acting normal stresses into stresses associated with the deformation state of the global fracture geometry and with the local contacts indicates that geometrically induced stresses contribute the more the lower the total effective normal stress and the shorter the fracture. Separating the contributions of the local contact mechanics and the overall fracture geometry to fracture normal stiffness indicates that the geometrical stiffness constitutes a lower bound for total stiffness; its relevance increases with decreasing fracture length. Our study demonstrates that non-linear hydro-mechanical coupling can lead to vastly different hydraulic responses and thus provides an alternative to conventional pressure-diffusion analysis that requires changes in flow regime to cover the full range of observations.
  • Thumbnail Image
    ItemOpen Access
    Experimental multi-scale characterization using micro X-ray computed tomography
    (Stuttgart : Institute of Applied Mechanics, 2023) Ruf, Matthias; Steeb, Holger (Prof. Dr.-Ing.)
    The effective mechanical and hydro-mechanical behavior of porous media, granular solids, and related materials with complex morphologies is intimately linked to their internal microstructure on the pore/grain scale. For microstructural characterization, transmission micro X-Ray Computed Tomography (µXRCT) has emerged as a crucial three-dimensional (3D) imaging technique that can provide structural information from the micrometer to centimeter scale. Due to its non-destructive nature, it can be excellently combined with time-dependent investigations, either ex situ or in situ. In particular, the possibility of coupling mechanical or hydro-mechanical characterization with µXRCT-based 3D imaging in situ allows many physical phenomena to be studied in more detail and consequently understood more comprehensively. For example, the microstructure evolution can be observed under various controlled boundary conditions and linked to measured effective quantities. New insights and improved understanding can ultimately positively influence modeling approaches. In order to be able to perform such multi-scale studies, a modular, open, and versatile lab-based µXRCT system was developed within the scope of this work. It provides a spatial resolution of down to less than 10 µm. The developed system has an integrated universal testing machine that enables in situ compressive, tensile, and torsional studies as well as their combinations, parallel or sequential. Furthermore, hydro-mechanical coupled phenomena can be investigated using appropriate equipment, such as triaxial flow cells. Thanks to the open and modular concept, the developed system can be used in the future for a wide variety of multiphysics research questions and can be considered as an open experimental platform. Employing the established system, various multi-scale phenomena from different material classes are motivated and partly investigated in more detail within this work. For this purpose, classical experimental characterization methods are combined with µXRCT-based 3D imaging ex situ as well as in situ. Among others, 3D imaging is combined with ultrasound wave propagation measurements to investigate the influence of artificially generated crack networks in Carrara marble by different thermal treatment protocols. Load-sequence effects are demonstrated on an open-cell foam sample. An in situ workflow is shown to investigate the not-well-understood effective stiffness behavior of biphasic monodisperse granular packings of stiff and soft particles of different volume fractions at different stress states. The fracturing of a rock sample in a triaxial flow cell shows possibilities of application in the context of fracture mechanics. All resulting data sets, including metadata, are available via the Data Repository of the University of Stuttgart (DaRUS).
  • Thumbnail Image
    ItemOpen Access
    Continuum mechanics of multicomponent materials : modelling, numerics and applications for biological materials in the framework of the theory of porous media
    (Stuttgart : Institut für Mechanik (Bauwesen), Lehrstuhl für Kontinuumsmechanik, Universität Stuttgart, 2021) Wagner, Arndt; Ehlers, Wolfgang (Prof. Dr.-Ing. Dr. h. c.)