02 Fakultät Bau- und Umweltingenieurwissenschaften
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/3
Browse
3 results
Search Results
Item Open Access The benefit of muscle-actuated systems : internal mechanics, optimization and learning(Stuttgart : Institut für Modellierung und Simulation Biomechanischer Systeme, Computational Biophysics and Biorobotics, 2023) Wochner, Isabell; Schmitt, Syn (Prof. Dr.)We are facing the challenge of an over-aging and overweight society. This leads to an increasing number of movement disorders and causes the loss of mobility and independence. To address this pressing issue, we need to develop new rehabilitation techniques and design innovative assistive devices. Achieving this goal requires a deeper understanding of the underlying mechanics that control muscle-actuated motion. However, despite extensive studies, the neural control of muscle-actuated motion remains poorly understood. While experiments are valuable and necessary tools to further our understanding, they are often limited by ethical and practical constraints. Therefore, simulating muscle-actuated motion has become increasingly important for testing hypotheses and bridge this knowledge gap. In silico, we can establish cause-effect relationships that are experimentally difficult or even impossible to measure. By changing morphological aspects of the underlying musculoskeletal structure or the neural control strategy itself, simulations are crucial in the quest for a deeper understanding of muscle-actuated motion. The insights gained from these simulations paves the way to develop new rehabilitation techniques, enhance pre-surgical planning, design better assistive devices and improve the performance of current robots. The primary objective of this dissertation is to study the intricate interplay between musculoskeletal dynamics, neural controller and the environment. To achieve this goal, a simulation framework has been developed as part of this thesis, enabling the modeling and control of muscle-actuated motion using both model-based and learning-based methods. By utilizing this framework, musculoskeletal models of the arm, head-neck complex and a simplified whole-body model are investigated in conjunction with various concepts of motor control. The main research questions of this thesis are therefore: 1. How does the neural control strategy select muscle activation patterns to generate the desired movement, and can we use this knowledge to design better assistive devices? 2. How does the musculoskeletal dynamics facilitate the neural control strategy in accomplishing this task of generating desired movements? To address these research questions, this thesis comprises a total of five journal and conference articles. More specifically, contributions I-III of this thesis focus on addressing the first research question which aims to understand how voluntary and reflexive movements can be predicted. First, we investigate various optimality principles using a musculoskeletal arm model to predict point-to-manifold reaching tasks. By using predictive simulations, we demonstrate how the arm would move towards a goal if, for example, our neural control strategy would minimize energy consumption. The main finding of this contribution shows that it is essential to include muscle dynamics and consider tasks with more openly defined targets to draw accurate conclusions about motor control. Through our analysis, we show that a combination of mechanical work, jerk and neuronal stimulation effort best predicts point-reaching when compared to human experiments. Second, we propose a novel method to optimize the design of exoskeleton power units taking into account the load cycle of predicted human movements. To achieve this goal, we employ a forward dynamic simulation of a generic musculoskeletal arm model, which is first scaled to represent different individuals. Next, we predict individual human motions and employ the predicted human torques to scale the electrical power units employing a novel scalability model. By considering the individual user needs and task demands, our approach achieves a lighter and more efficient design. In conclusion, our framework demonstrates the potential to improve the design of individual assistive devices. The third contribution focuses on predicting reflexive movements in response to sudden perturbations of the head-neck complex. To achieve this, we conducted experiments in which volunteers were placed on a table while supporting their heads with a trapdoor. This trapdoor was then suddenly released leading to a downward movement of the head until the reflexive reaction of the muscles stops the head from falling. We analyzed the results of these experiments, presenting characteristic parameters and highlighting differences between separate age and gender groups. Using this data, we also set up benchmark validations for a musculoskeletal head-neck model, including reflex control strategies. Our main findings are that there are large individual differences in reflexive responses between participants and that the perturbation direction significantly affects the reflexive response. Furthermore, we show that this data can be used as a benchmark test to validate musculoskeletal models and different muscle control strategies. While the first three contributions focus on the research question (1), contributions IV-V focus on (2) whether and how the musculoskeletal dynamics facilitate the learning and control task of various movements. We utilize a recently introduced information-theoretic approach called control effort to quantify the minimally required information to perform specific movements. By applying this concept, we can for example quantify how much biological muscles reduce the neuronal information load compared to technical DC-motors. We present a novel optimization algorithm to find this control effort and apply it to point-reaching and walking tasks. The main finding of this contribution is that the musculoskeletal dynamics reduce the control effort required for these movements compared to torque-driven systems. Finally, we hypothesize that the highly nonlinear muscle dynamics not only facilitate the control task but also provide inherent stability that is beneficial for learning from scratch. To test this, we employed various learning strategies for multiple anthropomorphic tasks, including point-reaching, ball-hitting, hopping, and squatting. The results of this investigation demonstrate that using muscle-like actuators improves the data-efficiency of the learning tasks. Additionally, including the muscle dynamics improves the robustness towards hyperparameters and allows for a better generalization towards unknown and unlearned perturbations. In summary, this thesis enhances existing methods to control and learn muscle-actuated motion, quantifies the control effort needed to perform certain movements and demonstrates that the inherent stability of the muscle dynamics facilitates the learning task. The models, control strategies, and experimental data presented in this work aid researchers in science and industry to improve their predictions in various fields such as neuroscience, ergonomics, rehabilitation, passive safety systems, and robotics. This allows us to reverse-engineer how we as humans control movement, uncovering the complex relationship between musculoskeletal dynamics and neural controller.Item Open Access Optimality principles in human point-to-manifold reaching accounting for muscle dynamics(2020) Wochner, Isabell; Driess, Danny; Zimmermann, Heiko; Häufle, Daniel F. B.; Toussaint, Marc; Schmitt, SynHuman arm movements are highly stereotypical under a large variety of experimental conditions. This is striking due to the high redundancy of the human musculoskeletal system, which in principle allows many possible trajectories toward a goal. Many researchers hypothesize that through evolution, learning, and adaption, the human system has developed optimal control strategies to select between these possibilities. Various optimality principles were proposed in the literature that reproduce human-like trajectories in certain conditions. However, these studies often focus on a single cost function and use simple torque-driven models of motion generation, which are not consistent with human muscle-actuated motion. The underlying structure of our human system, with the use of muscle dynamics in interaction with the control principles, might have a significant influence on what optimality principles best model human motion. To investigate this hypothesis, we consider a point-to-manifold reaching task that leaves the target underdetermined. Given hypothesized motion objectives, the control input is generated using Bayesian optimization, which is a machine learning based method that trades-off exploitation and exploration. Using numerical simulations with Hill-type muscles, we show that a combination of optimality principles best predicts human point-to-manifold reaching when accounting for the muscle dynamics.Item Open Access Simulating vertebroplasty using a multiphase continuum-mechanical approach : rheological characterization, numerical simulations, and experimental validation(Stuttgart : Institute for Modelling and Simulation of Biomechanical Systems, Chair of Continuum Biomechanics and Mechanobiology, University of Stuttgart, 2024) Trivedi, Zubin; Röhrle, Oliver (Prof., PhD)Percutaneous vertebroplasty is a surgical procedure for treating vertebral fractures involving injection of a so-called "bone cement'' into the vertebra. This Ph.D. thesis aimed to develop a computational model for simulating vertebroplasty, and thereby help practitioners determine the best operating parameters specific to each patient. The computational model employs a multiphase continuum-mechanical approach based on the Theory of Porous Media, along with discretization and upscaling methods specifically chosen and modified to suit the application. Apart from this, experiments were carried out to understand the behaviour of the bone cement in the context of vertebroplasty so that its behaviour can be correctly modelled. The developed computational model is validated using experiments done using a simple benchmark experiment. The simulations shed light on some crucial mechanical aspects of vertebroplasty that could determine the success or failure of the procedure.