02 Fakultät Bau- und Umweltingenieurwissenschaften
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/3
Browse
7 results
Search Results
Item Open Access Der Abbau von Fluorbenzol und seinen Homologen durch Burkholderia fungorum FLU 100(2007) Strunk, Niko; Engesser, Karl-Heinrich (Prof. Dr.)Der Stamm Burkholderia fungorum FLU 100 besitzt die unter den Bakterien äußerst selten zu findende Eigenschaft, Fluorbenzol als alleinige Kohlenstoff- und Energiequelle nutzen zu können. Außerdem kann der Stamm auch die anderen Monohalogenbenzole sowie Benzol und Toluol - als Reinstoff oder in beliebigen Mischungen - vollständig produktiv verwerten. In dieser Arbeit wurden ein Teil des Abbauweges sowie die Einsatzmöglichkeiten des Stammes im Rahmen der biologischen Abluftreinigung erforscht. Der Stamm FLU 100 kann mit Halogenatomen oder Alkylgruppen di- und höher substituierte Benzole nicht abbauen. 3-Fluorphenol ist hingegen abbaubar, jedoch wird hierzu, abweichend vom Fluorbenzolabbauweg, mindestens ein weiteres Enzym, eine Phenoloxygenase exprimiert. Zur Aufklärung der Aromatenabbauwege wurde Burkholderia fungorum FLU 100 mittels einer Tn5 Variante (pCro2) mutiert. Die Untersuchung der gewonnenen Transposonmutanten lieferte zahlreiche Metabolite des oberen Abbauweges. Das initiale Dioxygenasesystem greift die angebotenen benzoiden Substrate stets in Orthoposition zum Substituenten an. Dadurch wird die Aromatizität aufgehoben, es werden in 3 Position substituierte Cyclohexa 3,5 dien 1,2 diole (Diendiole) gebildet, welche beim Abbau von Monohalogenaromaten das Halogenatom in 3 Position tragen. Diese Metabolite werden zu den entsprechenden, an der 3 Position substituierten Catecholen zyklisiert, welche wiederum zu 2 substituierten Muconaten oxidativ gespalten werden. Aus den Muconaten entstehen in einem weiterem Schritt Muconolactone. Die Catechol-1,2-dioxygenase weist dabei klassische Typ – II Kinetik auf. Der Stamm FLU 100 verfügt über eine bemerkenswert hohe Fluorid – Toleranz. Er stellt das Wachstum erst ab 200 mmol/L im Medium ein. Zwei Biotricklingfilter im Technikumsmaßstab wurden konstruiert und über anderthalb Jahre hinweg betrieben. Als Packungsmaterial kam Blähton zum Einsatz. Es zeigte sich, dass fluorbenzolbelastete Abluft mit einer geringen Eliminationskapazität von ca. 5 g/m3h abgereinigt werden konnte, der Wirkungsgrad lag dabei um die 50 %. Eine äquimolare Mischung aus Fluorbenzol und Chlorbenzol konnte mit einer Eliminationskapazität zwischen 6 und 10 g/m3h behandelt werden. Dabei lag der Wirkungsgrad bezüglich des Fluorbenzols bei ca. 50 %, der des Chlorbenzols bei ca. 90 %. In den Reaktorsümpfen sammelten sich Fluorwasserstoff und Chlorwasserstoff als saure Metabolite an. Diese konnten mit Natriumhydrogencarbonat neutralisiert werden. Weiße, kristalline Ablagerungen traten mit der Zeit in den Reaktorsümpfen auf. Diese enthielten entgegen den Erwartungen nur sehr wenig Calciumfluorid (Fluoranteil 5 %), sondern vor allem Calcium, Sauerstoff, Phosphor und Silizium.Item Open Access Mikrobiologischer Abbau verzweigter kurzkettiger Aliphaten am Beispiel Methylpropen(2023) Helbich, Steffen; Engesser, Karl-Heinrich (Prof. Dr. rer. nat. habil.)Die Stämme IBE100 und IBE200 wurden aus Belebtschlamm einer Kläranlage mit Methylpropen (MP) als alleinige Kohlenstoff- und Energiequelle isoliert. Mittels Vergleich der 16S rRNA sowie hsp65 Gensequenzabschnitte und Genom-basierter Taxonomie wurden die Stämme IBE100 und IBE200 den Spezies Mycolicibacterium gadium und Mycobacterium gordonae zugeordnet. Diese obligat aeroben Bakterien sind Oxidase- und Katalase-positiv, säurefest, nicht motil und bilden gelb-pigmentierte, kreisförmige, flache Kolonien aus. Aufgrund der wachsartigen Beschaffenheit der Zellen wurden Flüssigkulturen mit dem Detergenz Triton X-100 versetzt, um ein starkes Verklumpen zu vermeiden. Neben dem Isolationssubstrat Methylpropen (IBE100: µ = 0,018 h-1 und IBE200: µ = 0,025 h-1) unterscheiden sich die Stämme in der Nutzung der Substrate, die als alleinige Kohlenstoff- und Energiequellen verwendet werden können. Stamm IBE100 ist in der Lage, auf den vermuteten Metaboliten von MP, 1,2-Epoxy-2-methylpropan, 2-Methylpropan-1,2-diol, 2 Hydroxyisobuttersäure, 3-Hydroxybuttersäure sowie Glucose, Fructose und Vollmedien (LB, NB, TB) zu wachsen, Stamm IBE200 hingegen nicht. Strukturanaloga von MP und seinen Metaboliten (verzweigte kurzkettige Alkene, Epoxide, vicinale Diole), zyklische aliphatische Verbindungen und Aromaten induzierten bei beiden Stämmen kein Wachstum. Die cometabolische subterminale Oxidation von n-Butan durch dieselbe Monooxygenase, die MP oxidiert, wurde ebenso nachgewiesen wie ihre Induzierbarkeit durch MP und die Indigobildung aus Indol. Eine am Abbauweg von MP beteiligte Alkohol-Dehydrogenase, welche die Oxidation von 2 Methylpropan-1,2-diol katalysiert, ist nicht homolog zu beschriebenen Enzymen gleicher Funktion, die in Abbauwegen von tert-Butanol und 2-Methylpropan-1,2-diol vorkommen. Es konnte gezeigt werden, dass die Dehydrogenase im Zellextrakt NADP gegenüber NAD bevorzugt. Aus der Sequenzierung des Gesamtgenoms, einer differenziellen Expressionsanalyse und einem Peptidmassen Fingerprint wurde ein Abbauweg für Methylpropen abgeleitet. Die identifizierten Schlüsselgene codieren für eine lösliche 4-Komponenten-di-Eisen-Monooxygenase mit Epoxidase-Aktivität, eine Epoxid-Hydrolase und eine 2 Hydroxyisobutyryl-CoA-Mutase. Die Tertiärstrukturen dieser Enzyme wurden modelliert. In beiden Stämmen sind die beteiligten Gene in Clustern von 61,0 bzw. 58,5 kbp in einer erstaunlich hoch konservierten Operonstruktur angeordnet. Diese Cluster enthalten auch die Gene, die für Teile des aeroben Synthesewegs von Adenosylcobalamin codieren, einem Vitamin, das für die von der Mutase katalysierte Kohlenstoffumlagerungsreaktion erforderlich ist. Eine Konvergenz mit dem tert-Butanol-Abbauweg wurde ersichtlich, jedoch konnte der Alkohol selbst aufgrund des Fehlens der erforderlichen spezifischen Oxygenase nicht als Kohlenstoffquelle genutzt werden. Dies ist der erste Nachweis eines Abbauweges für MP auf genetischer Ebene (Helbich et al. 2023), der bisher rein auf Transformationsanalysen mit vermuteten Metaboliten beruht, die aus MTBE-Abbauexperimenten postuliert wurden. Die für die Epoxidierung von MP verantwortliche Monooxygenase wurde als Mitglied der Gruppe 2 der löslichen Monooxygenasen des Aromaten-/Alken-/Isopren-Typs identifiziert, die aus einer Oxygenase-α-Untereinheit IbeA, einer γ-Untereinheit IbeB, einem Ferredoxin vom Rieske-Typ IbeC, einem Kopplungsprotein IbeD, einer β-Untereinheit IbeE und einer flavinhaltigen NAD(P)H-Reduktase IbeF besteht. Die Tertiärstruktur der α-Untereinheit IbeA wurde modelliert und mit ihrer nächsten Verwandten, der Isopren-Monooxygenase aus Rhodococcus sp. AD45, verglichen. Die Geometrien des vorhergesagten aktiven Zentrums und der Substrattunnel lassen auf eine gewisse sterische Einschränkung bei der Substratverwertung schließen. Die Monooxygenase wurde in dem n-Alkan abbauenden Mycobacterium fluoranthenivorans BUT6 mit pST-K, einem E. coli-Mycobacterium-Shuttle- und Expressionsvektor, heterolog exprimiert. Für die Ausbildung einer katalytischen Aktivität war eine Inkubationstemperatur von ~20 °C erforderlich. Die Monooxygenase war trotz der gescheiterten Expression der Reduktase-Komponente IsoF aktiv. Die Umwandlung von MP in 1,2-Epoxy-2-methylpropan in ruhenden Zellen wurde kolorimetrisch mit dem NBP-Assay nachgewiesen (KM = 271 mM, vmax = 46 mM ⋅ h-1).Item Open Access Isolation and characterization of 2-butoxyethanol degrading bacterial strains(2020) Woiski, Christine; Dobslaw, Daniel; Engesser, Karl-HeinrichA total of 11 bacterial strains capable of completely degrading 2-butoxyethanol (2-BE) were isolated from forest soil, a biotrickling filter, a bioscrubber, and activated sludge, and identified by 16S rRNA gene sequence analysis. Eight of these strains belong to the genus Pseudomonas; the remaining three strains are Hydrogenophaga pseudoflava BOE3, Gordonia terrae BOE5, and Cupriavidus oxalaticus BOE300. In addition to 2-BE, all isolated strains were able to grow on 2-ethoxyethanol and 2-propoxyethanol, ethanol, n-hexanol, ethyl acetate, 2-butoxyacetic acid (2-BAA), glyoxylic acid, and n-butanol. Apart from the only gram-positive strain isolated, BOE5, none of the strains were able to grow on the nonpolar ethers diethyl ether, di-n-butyl ether, n-butyl vinyl ether, and dibenzyl ether, as well as on 1-butoxy-2-propanol. Strains H. pseudoflava BOE3 and two of the isolated pseudomonads, Pseudomonas putida BOE100 and P. vancouverensis BOE200, were studied in more detail. The maximum growth rates of strains BOE3, BOE100, and BOE200 at 30 °C were 0.204 h-1 at 4 mM, 0.645 h-1 at 5 mM, and 0.395 h-1 at 6 mM 2-BE, respectively. 2-BAA, n-butanol, and butanoic acid were detected as potential metabolites during the degradation of 2-BE. These findings indicate that the degradation of 2-BE by the isolated gram-negative strains proceeds via oxidation to 2-BAA with subsequent cleavage of the ether bond yielding glyoxylate and n-butanol. Since Gordonia terrae BOE5 was the only strain able to degrade nonpolar ethers like diethyl ether, the degradation pathway of 2-BE may be different for this strain.Item Open Access Degradation of toluene by ortho cleavage enzymes in Burkholderia fungorum FLU100(2014) Dobslaw, Daniel; Engesser, Karl-HeinrichBurkholderia fungorum FLU100 simultaneously oxidized any mixture of toluene, benzene and monohalogen benzenes to (3-substituted) catechols with a selectivity of nearly 100%. Further metabolism occurred via enzymes of ortho cleavage pathways with complete mineralization. During the transformation of 3-methylcatechol, 4-carboxymethyl-2-methylbut-2-en-4-olide (2-methyl-2-enelactone, 2-ML) accumulated transiently, being further mineralized only after a lag phase of 2 h in case of cells pre-grown on benzene or mono-halogen benzenes. No lag phase, however, occurred after growth on toluene. Cultures inhibited by chloramphenicol after growth on benzene or mono-halogen benzenes were unable to metabolize 2-ML supplied externally, even after prolonged incubation. A control culture grown with toluene did not show any lag phase and used 2-ML as a substrate. This means that 2-ML is an intermediate of toluene degradation and converted by specific enzymes. The conversion of 4-methylcatechol as a very minor by-product of toluene degradation in strain FLU100 resulted in the accumulation of 4-carboxymethyl-4-methylbut-2-en-4-olide (4-methyl-2-enelactone, 4-ML) as a dead-end product, excluding its nature as a possible intermediate. Thus, 3-methylcyclohexa-3,5-diene-1,2-diol, 3-methylcatechol, 2-methyl muconate and 2-ML were identified as central intermediates of productive ortho cleavage pathways for toluene metabolism in B. fungorum FLU100.Item Open Access Der biologische Abbau von hydroxylierten Alkylethern(2018) Woiski, Christine; Engesser, Karl-Heinrich (Prof. Dr. rer. nat. habil.)Item Open Access Herausforderungen in der biologischen und nicht-biologischen Abluftreinigung(2020) Dobslaw, Daniel; Engesser, Karl-Heinrich (Prof. Dr.)Jüngste Entwicklungsszenarien der International Energy Agency (IEA) sowie des Energiekonzerns British Petroleum (BP) zeigten, dass bis zum Jahr 2040 gegenüber dem heutigen Stand die Weltbevölkerung um 23 % wachsen und die Einkommen von insgesamt 2,5 Mrd. einkommensschwachen Menschen ansteigen werden. Das ‚bussiness-as-usual‘ - Szenario sagt aufgrund des Anstiegs in Weltbevölkerung und Wohlstand, trotz bestehender Bemühungen zur Steigerung der Energieeffizienz, eine Steigerung der weltweiten CO2-Emissionen um gut 30 % voraus. Berücksichtigt man dabei die jüngsten technischen und wissenschaftlichen Tendenzen wie beispielsweise ‚low-carb‘ - Kraftstoffe oder erneuerbare Energien, so wird weiterhin ein Anstieg der CO2-Emissionen um ca. 10 % vorausgesagt. Da die Weltgemeinschaft eine Restriktion der Erderwärmung auf deutlich unter 2 °C bis 2100 anstrebt, diese aber in den Industriestaaten eine Minderung der Emissionen an CO2-Äquivalenten von ca. 12 t CO2,eq·a-1·Bewohner-1 auf unter 1 t CO2,eq·a-1·Bewohner-1 bis zum Jahr 2050 erfordert, sind alle Möglichkeiten der Vermeidung und Minderung von treibhausrelevanten und umweltrelevanten Schadstoffen zu ergreifen. Die Minderung relevanter gasförmiger Emissionen kann durch geeignete Abluftreinigungsmaßnahmen wie Kondensation, Absorption, Membranverfahren, oxidative Verfahren, oxidative Katalyse, nicht-thermische Plasmen, UV-Oxidation, thermische Plasmen und Adsorption wie auch durch nicht-biologische Verfahren oder Verfahrenskombinationen aus nicht-biologischen und biologischen Verfahren umgesetzt werden. Speziell im gewerblichen und industriellen Umfeld wird der Stand der Technik durch thermisch oxidative Verfahren definiert. Da diese in der Regel nicht unter adiabaten Bedingungen betrieben werden können, ist der Zusatz von Primärenergieträgern erforderlich, der zu zusätzlichen Emissionen an treibhausrelevanten Gasen wie CO2, CH4 und N2O führt. Da in biologischen Abluftreinigungsverfahren die Schadstoffe durch biochemische Abbauprozesse mineralisiert werden, treten in der Regel keine sekundären Abfallströme oder zusätzlichen treibhausrelevanten Emissionen auf. Obwohl die biologischen Abluftreinigungsverfahren somit einen wichtigen Beitrag zum 1,5 °C - Ziel der Weltgemeinschaft leisten können, sind sie im Marktsegment der Umwelttechniken mit Ausnahme der landwirtschaftlichen Massentierhaltung bisher kaum vertreten und zumeist auf Nischenanwendungen restringiert. Für biologische Abluftreinigungsverfahren ist eine Reihe an vermeintlichen Einschränkungen bekannt, die sicherlich die geringe Marktdurchdringung mitverantworten. Für eine breite Akzeptanz dieser Verfahren ist es daher erforderlich diese vermeintlichen Einschränkungen kritisch zu hinterfragen und wenn möglich zu widerlegen. Gelingt diese Widerlegung nicht und scheiden biologische Abluftreinigungsverfahren bei ausgewählten Applikationen aus, so sind geeignete Alternativverfahren erforderlich - auch wenn verschiedene Abluftsituationen existieren, die auch nicht-biologische Verfahren an den Rand der Machbarkeit führen. Die vorliegende Arbeit thematisiert daher die bekannten Restriktionen für biologische Abluftreinigungsverfahren und verfolgt das Ziel die bestehenden Applikationsgrenzen zu erweitern und den sich hieraus ergebenden Herausforderungen unter der Prämisse der Etablierung eines Prozesses mit hoher technischer Stabilität, hoher Reinigungseffizienz und einer ökonomisch interessanten Kostenstruktur zu begegnen. Die identifizierten Restriktionen wurden an folgenden Applikationsbeispielen widerlegt bzw. alternative nicht-biologische Reinigungsverfahren vorgestellt: • Herausforderung Platzbedarf und Clogging: Der durch höhere Kontaktzeiten bedingte erhöhte Platzbedarf von biologischen Abluftreinigungsanlagen stellt ein signifikantes Vermarktungshindernis dar. Bestrebungen zur kompakteren Bauweise führen jedoch zu höheren spezifischen Schadstofffrachten und der erhöhten Gefahr von Biomasse bedingtem Clogging. Am Beispiel des biologisch leicht abbaubaren Schadstoffs 2 Butoxyethanol wurde die technische und ökonomische Machbarkeit eines mit Natronlauge und Druckluftinjektion als Anti-Clogging-Maßnahme ausgestatteten, rückspülbaren Biotricklingfilters sowohl im Labor- als auch Pilotmaßstab erfolgreich demonstriert. • Herausforderung Stoffgemischabbau und Xenobiotikaabbau: Durch genetische und enzymatische Regulationsmechanismen erweist sich der biologische Abbau von Schadstoffgemischen als zunehmend schwieriger je komplexer das Gemisch bzw. je xenobiotischer die Struktur der enthaltenen Schadstoffe ist. Auch erfordert der Abbau xenobiotischer Verbindungen häufig den Einsatz adaptierter Spezialbiozönosen, deren biotechnologische Bereitstellung mit erhöhten Kosten verbunden ist. Am Beispiel eines in der Kautschukverarbeitung zum Einsatz kommenden Lösemittelgemisches aus 70 Vol% tert. Butanol und 30 Vol% Aceton wurde der erfolgreiche Gemischabbau im Verfahrensvergleich zweier Biotricklingfilter und eines Biowäschers gezeigt und das Potential innovativer Kompostitträger, die keine zusätzliche Beimpfung mit Leistungsbiozönosen erfordern, dargelegt. • Herausforderung biologische Persistenz: Mit zunehmendem xenobiotischen Charakter von Schadstoffen sinkt deren biologische Abbaubarkeit, da häufig spezialisierte Enzyme oder innovative Abbauwege für deren Mineralisierung erforderlich sind und geeignete mikrobielle Isolate entweder nicht existent sind oder eine zu geringe Transformationskinetik für eine technische Applikation aufweisen. Der Einsatz biologischer Abluftreinigungsverfahren erscheint hier unter technischen und ökonomischen Aspekten zumeist nicht sinnvoll. Diese Einschätzung wurde am Beispiel des bakteriellen Abbaus des Xenobiotikums 2-Chlortoluol widerlegt, welches durch insgesamt vier neu gewonnene Isolate mineralisiert und deren Anwendbarkeit in Biotricklingfiltern zur Behandlung von 2-Chlortoluol haltiger Abluft erfolgreich gezeigt werden konnte. Die Stabilität des Inokulums in der sich etablierenden Biozönose konnte in einer Langzeitstudie über 985 Tage erfolgreich bestätigt werden, wodurch sich die initialen Kosten für die Beimpfung der Anlage relativierten. • Herausforderung begrenzte Transformationskinetik: Neben xenobiotischen Einflüssen führen insbesondere eine steigende Lipophilie sowie steigende Dampfdrücke von Abluftinhaltsstoffen zu einer stark restringierten Transformationskinetik, wodurch das Anlagenvolumen und somit die Kosten der biologischen Behandlung stark ansteigen. Der Ansatz einer Verfahrenskombination aus nicht-thermischem Plasma zur partiellen Oxidation und somit Hydrophilisierung der lipophilen Schadstoffe mit nachfolgender biologischer Mineralisierung erscheint unter technischen und ökonomischen Aspekten ein interessanter Ansatz zu sein. Die Verfahrenskombination weist dabei eine kompaktere und kleinere Baugröße sowie geringere Betriebskosten als ein alleinstehendes NTP-/BTF-Verfahren auf. Die Machbarkeit dieses Anlagenkonzepts konnte sowohl im Labor- als auch Pilotmaßstab an acht verschiedenen artifiziellen Abluftströmen sowie an drei Realabluftströmen erfolgreich gezeigt werden. • Herausforderung Temperatur: Abluftströme weisen häufig Temperaturen von 50 °C bis knapp 150 °C auf, insbesondere wenn sie aus thermisch betriebenen Produktionsprozessen entstammen. Nach erfolgter Vorkonditionierung liegen die Ablufttemperaturen zumeist bei 50 - 70 °C. Im Vergleich zu mesophil betriebenen biologischen Verfahren ist der Betrieb thermophil betriebener biologischer Abluftreinigungsanlagen deutlich anspruchsvoller. Neben verfahrenstechnischen Problemstellungen ist die Ursache hierfür vor allem in steigenden Dampfdrücken und somit geringeren Bioverfügbarkeiten sowie ggf. steigende Toxizitäten der Schadstoffe zu suchen. Am Beispiel der Abgase von drei Biogasanlagen nach dem Verbrennungsprozess, die sich durch hohe Konzentrationen an Methan, NOx, CO, aber auch dem kanzerogenen Formaldehyd auszeichnen, wurde die technische und ökonomische Machbarkeit einer Vefahrenskombination aus chemischem Wäscher und thermophil betriebenen Biofilter zur erfolgreichen Behandlung dieser Abgase untersucht. Im Kontext von Vorversuchen zur Behandlung von Methan und Formaldehyd im thermophilen Temperaturbereich trat erwartungsgemäß eine sehr geringe Reinigungseffizienz des Biofilters auf. Hingegen konnte durch gezieltes Sauerstoffmanagement und optionale H2O2-Dosierung die Leistungsfähigkeit des Basenwäschers insbesondere gegenüber Formaldehyd auf über 95 % gesteigert werden. • Herausforderung Biopersistenz und allgemein fehlende Reinigungseffizienz: Die Anwendbarkeit biologischer Abluftreinigungsverfahren ist hingegen gänzlich bei hoch-persistenten Abluftkomponenten wie polyhalogenierten Kohlenwasserstoffen überschritten, die trotz Restriktionen des Kyoto-Protokolls aufgrund fehlender Substituierbarkeit immer noch in der Halbleiterindustrie, bei der Verhüttung von Aluminium oder seltenen Erden, Luft- und Raumfahrtindustrie oder Entsorgungswirtschaft freigesetzt werden. Dabei erweist sich insbesondere die Behandlung des chemisch hochstabilen CF4 als erhebliche Herausforderung. Das Scheitern etablierter Abluftreinigungsverfahren und somit die Notwendigkeit der Implementierung hoch-innovativer Verfahrenskonzepte konnte an diesem exemplarischen Abluftschadstoff eindrucksvoll gezeigt werden. Das hierfür zum Einsatz kommende strahlungsgekühlte Wasserdampfplasma wies nach ersten Optimierungsschritten eine Reinigungseffizienz von 99,6 % bei einem SIE-Wert von 2222 kWh·1000 m3 auf, während eine konventionelle thermische Nachbehandlung gemäß Referenzanlagen nur einen Wirkungsgrad von ca. 18 % erreichte.Item Open Access Substrate-independent expression of key functional genes in Cycloclasticus pugetii strain PS-1 limits their use as markers for PAH biodegradation(2023) Vogel, Anjela L.; Thompson, Katharine J.; Straub, Daniel; App, Constantin B.; Gutierrez, Tony; Löffler, Frank E.; Kleindienst, SaraMicrobial degradation of petroleum hydrocarbons is a crucial process for the clean-up of oil-contaminated environments. Cycloclasticus spp. are well-known polycyclic aromatic hydrocarbon (PAH) degraders that possess PAH-degradation marker genes including rhd3α, rhd2α, and pahE. However, it remains unknown if the expression of these genes can serve as an indicator for active PAH degradation. Here, we determined transcript-to-gene (TtG) ratios with (reverse transcription) qPCR in cultures of Cycloclasticus pugetii strain PS-1 grown with naphthalene, phenanthrene, a mixture of these PAHs, or alternate substrates (i.e., no PAHs). Mean TtG ratios of 1.99 × 10-2, 1.80 × 10-3, and 3.20 × 10-3 for rhd3α, rhd2α, and pahE, respectively, were measured in the presence or absence of PAHs. The TtG values suggested that marker-gene expression is independent of PAH degradation. Measurement of TtG ratios in Arctic seawater microcosms amended with water-accommodated crude oil fractions, and incubated under in situ temperature conditions (i.e., 1.5°C), only detected Cycloclasticus spp. rhd2α genes and transcripts (mean TtG ratio of 4.15 × 10-1). The other marker genes - rhd3α and pahE - were not detected, suggesting that not all Cycloclasticus spp. carry these genes and a broader yet-to-be-identified repertoire of PAH-degradation genes exists. The results indicate that the expression of PAH marker genes may not correlate with PAH-degradation activity, and transcription data should be interpreted cautiously.