02 Fakultät Bau- und Umweltingenieurwissenschaften
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/3
Browse
Search Results
Item Open Access Patient‐specific simulation of brain tumour growth and regression(2023) Suditsch, Marlon; Ricken, Tim; Wagner, ArndtThe medical relevance of brain tumours is characterised by its locally invasive and destructive growth. With a high mortality rate combined with a short remaining life expectancy, brain tumours are identified as highly malignant. A continuum‐mechanical model for the description of the governing processes of growth and regression is derived in the framework of the Theory of Porous Media (TPM). The model is based on medical multi‐modal magnetic resonance imaging (MRI) scans, which represent the gold standard in diagnosis. The multi‐phase model is described mathematically via strongly coupled partial differential equations. This set of governing equations is transformed into their weak formulation and is solved with the software package FEniCS. A proof‐of‐concept simulation based on one patient geometry and tumour pathology shows the relevant processes of tumour growth and the results are discussed.Item Open Access Analysing the bone cement flow in the injection apparatus during vertebroplasty(2023) Trivedi, Zubin; Gehweiler, Dominic; Wychowaniec, Jacek K.; Ricken, Tim; Gueorguiev-Rüegg, Boyko; Wagner, Arndt; Röhrle, OliverVertebroplasty, a medical procedure for treating vertebral fractures, requires medical practitioners to inject bone cement inside the vertebra using a cannula attached to a syringe. The required injection force must be small enough for the practitioner to apply it by hand while remaining stable for a controlled injection. Several factors could make the injection force unintuitive for the practitioners, one of them being the non‐Newtonian nature of the bone cement. The viscosity of the bone cement varies as it flows through the different parts of the injection apparatus and the porous cancellous interior of the vertebra. Therefore, it is important to study the flow of bone cement through these parts. This work is a preliminary study on the flow of bone cement through the injection apparatus. Firstly, we obtained the rheological parameters for the power law model of bone cement using experiments using standard clinical equipment. These parameters were then used to obtain the shear rate, viscosity, and velocity profiles of the bone cement flow through the cannula. Lastly, an analysis was carried out to understand the influence of various geometrical parameters of the injection apparatus, in which the radius of the cannula was found to be the most influential parameter.Item Open Access About the applicability of the theory of porous media for the modelling of non‐isothermal material injection into porous structures(2023) Völter, Jan-Sören L.; Ricken, Tim; Röhrle, OliverIn this contribution we investigate the relevance of the theory of porous media for the non-isothermal modelling of material injection into porous structures. In particular, we provide a model describing the injection of cement during percutaneous vertebroplasty, which is derived by consistently following the theory of porous media. We demonstrate numerically that this model elicits unphysical behaviour under local thermal non-equilibrium conditions. No distinct unphysical behaviour is observed under local thermal equilibrium conditions. We conclude that heuristic modifications of the model equations are necessary and suspect the unphysical behaviour to be caused by contradictory modelling assumptions.Item Open Access A continuum mechanical porous media model for vertebroplasty : numerical simulations and experimental validation(2023) Trivedi, Zubin; Gehweiler, Dominic; Wychowaniec, Jacek K.; Ricken, Tim; Gueorguiev, Boyko; Wagner, Arndt; Röhrle, OliverThe outcome of vertebroplasty is hard to predict due to its dependence on complex factors like bone cement and marrow rheologies. Cement leakage could occur if the procedure is done incorrectly, potentially causing adverse complications. A reliable simulation could predict the patient-specific outcome preoperatively and avoid the risk of cement leakage. Therefore, the aim of this work was to introduce a computationally feasible and experimentally validated model for simulating vertebroplasty. The developed model is a multiphase continuum-mechanical macro-scale model based on the Theory of Porous Media. The related governing equations were discretized using a combined finite element-finite volume approach by the so-called Box discretization. Three different rheological upscaling methods were used to compare and determine the most suitable approach for this application. For validation, a benchmark experiment was set up and simulated using the model. The influence of bone marrow and parameters like permeability, porosity, etc., was investigated to study the effect of varying conditions on vertebroplasty. The presented model could realistically simulate the injection of bone cement in porous materials when used with the correct rheological upscaling models, of which the semi-analytical averaging of the viscosity gave the best results. The marrow viscosity is identified as the crucial reference to categorize bone cements as ‘high- ’or ‘low-’ viscosity in the context of vertebroplasty. It is confirmed that a cement with higher viscosity than the marrow ensures stable development of the injection and a proper cement interdigitation inside the vertebra.