02 Fakultät Bau- und Umweltingenieurwissenschaften

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/3

Browse

Search Results

Now showing 1 - 10 of 186
  • Thumbnail Image
    ItemOpen Access
    High-resolution spatio-temporal measurements of the colmation phenomenon under laboratory conditions
    (Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart, 2022) Mayar, Mohammad Assem; Wieprecht, Silke (Prof. Dr.-Ing.)
    The fine sediment infiltration and accumulation into the gravel bed of rivers, the so-called colmation phenomenon, is a pernicious process exacerbated by anthropogenic activities. Owing to the importance and complexity of this phenomenon, it has been widely studied over the last decades. Various devices and methods have been developed to assess this phenomenon, where most of them are destructive and sample-based, resulting in an alteration of the natural conditions. Therefore, non-intrusive techniques, which provide spatial and temporal details with a high-resolution, are required to discretize the mechanisms involved in the colmation process. To address these issues, investigations under laboratory conditions may simplify the complexity of nature and enable individual and exactly defined boundary conditions to be investigated. Therefore, this thesis aims at (i) developing a non-intrusive and undisturbed measurement method for the high-resolution spatio-temporal measurements of the sediment infiltration processes and the development of sediment accumulation in an artificial river bed under laboratory conditions, (ii) applying this method to certain experiments for the assessment of the effects of different boundary conditions on sediment infiltration, and (iii) investigating the colmation phenomenon (also known as clogging) of gravel beds. For this purpose, the gamma-ray attenuation method is used together with an artificial gravel bed arranged from the spheres with various diameters and placed in a laboratory flume. This new method works based on the gamma radiation that passes through the infiltrated sediments, water, and bed spheres, in which the gamma-ray attenuation is linked to the variations of the infiltrated sediments’ quantity. The main simplification of this approach is that gravel beds are represented by the combinations of different-sized spheres. This gives the opportunity to fully distinguish infiltrating sediments from the bed material, reduce the complexity of the natural environment, and allows for repetitive measurements of the same position with different boundary conditions. From the results of this study, first, the gamma-ray attenuation measurement method was optimized to resolve the inconsistencies in the measurements. Subsequently, the concept of the non-intrusive and undisturbed measurement is proved through box experiments. Additional reproducibility experiments in the laboratory flume, for a similar bed structure, showed only small deviations between two experiments with the same setup. Consequently, the established technique was used in a series of experiments to evaluate the effects of different supply rates, total supply masses, and sediment particle size boundary conditions on the sediment infiltration and colmation processes. Vertical profiles of the infiltrated sediment were quantified through high spatial resolution measurements. Furthermore, to evaluate the infiltrating sediment accumulation development, and the temporal variations of the infiltrated sediments, the vertical profile measurements were first repeated after a specific time-period to track interval-averaged variations in all positions of the vertical axis. Next, a specific position of the vertical axis was measured continuously during the entire experiment in a high temporal resolution. The measured vertical profiles illustrate the vertical distribution, colmation, and unimpeded percolation of the infiltrated sediments. The dynamic one-point measurement precisely identifies the three phases (the start of the pore-filling, the required time to fill the pore, and the final amount of infiltrated sediments including natural fluctuation during the ongoing experiments) of the sediment infiltration or the possible clogging. As a limitation, the gamma-ray attenuation system’s current configuration only works in artificial gravel beds because of the given density difference between infiltrated sediments and the artificial bed structure. Intense radiations that pass through the natural bed's thickness are capable of detecting a significant amount of infiltrated sediments. However, small amounts of infiltrated sediments will create only a minimal shift in attenuation, which might be confused with the statistical error. In addition, the legal restriction against using radioactive material in the natural environment is another reason for not applying it in the field. Furthermore, the gamma-ray attenuation method cannot resolve the sediment distribution in the measurement horizon and provides an integrative result for each measurement position. In addition, if a mixture of silt, clay, and sand is supplied to the experiment, the gamma-ray attenuation system will produce a bulk result of all the infiltrated materials. To conclude, despite the limitations mentioned above, the gamma-ray attenuation method offers a unique opportunity for the non-intrusive and undisturbed measurements of the sediment infiltration or the special case of colmation, with a high spatio-temporal resolution. This method has the potential to quantify the investigated processes on a millimetric spatial scale, if the measurement time is not a constraint, or vice versa, in a high temporal resolution (seconds) for a specific position, if spatial scale is not important. Moreover, the gamma-ray attenuation approach can simultaneously measure the longitudinal distribution of the sedimentological processes, if multiple instruments or a single device with several radiation-emitting-holes is in operation. Last, but not least, rather than the spheres, artificial gravel beds could be made of any substance with a composition significantly different from the infiltrating sediments, and the boundary conditions of the experiments can be improved in order to attain conditions close to nature. Finally, the gamma-ray attenuation method can be integrated with advanced flow measurement instruments such as Particle Image Velocimetry (PIV) and other high-resolution endoscopic devices to track the behavior of fine sediment infiltration and its clogging process in the porous gravel beds as it occurs in nature.
  • Thumbnail Image
    ItemOpen Access
    Application of a non-parametric classification scheme to catchment hydrology
    (2008) He, Yi; Bárdossy, András (Prof. Dr. rer. nat. Dr.-Ing. habil.)
    Classification has been considered a fundamental step towards improved catchment hydrology science. Catchments classification has been traditionally carried out via Linnaeus-type cluster analysis, mainly represented by hierarchical approaches and methods based on partitioning of hydrological data set. This paper proposes a new scheme where the classification procedure is based on similarity interpreted as distances between catchments. The similarity or distance is defined under the following premises: 1. similar catchments behave similarly; 2. similarity can be described with catchments' characteristics; and 3. hydrological models are able to capture catchments' similarity. If many sets of model parameters lead to similar model performance for two catchments, they are considered as similar catchments. To implement the proposed scheme, two procedures, namely multidimensional scaling (MDS) and local variance reduction (LVR), are undertaken to construct a configuration of n catchments' characteristics in Euclidean space using information about similar performance between the catchments. The MDS is used to determine the appropriate dimension of the Euclidean space and the LVR is used to obtain the transformation matrix and the coordinates in the transformed Euclidean space. This scheme avoids the idea of parametric regression-based regionalization approaches where a regression function is pre-defined between model parameters and catchment descriptors. In the aforementioned approach, the function that is selected is usually subjective and arbitrary and one can also argue that a priori function is neither able to represent the highly complex hydrological processes nor consider the interdependences amongst model parameters. The proposed scheme is initially tested with a research version of the HBV-IWS model on a number of catchments within the Rhine Basin. Additionally a modified Xinanjiang model is applied to the same catchments to check if the assumption of invariant catchment similarity holds true. Invariant catchment similarity here assumes the catchments genuinely carry their similarities independent of the model used for simulation. This test is also a backstop measure to determine if the models under consideration are capturing the underlying simplified hydrological processes in a rational manner. The scheme will be extended to regional calibration of rainfall runoff models as well as regional drought or flood studies once similarity within catchments has been established. The proposed scheme will eventually contribute to the PUB (Predictions in Ungauged Basins) initiative.
  • Thumbnail Image
    ItemOpen Access
    Climate sensitivity of a large lake
    (2013) Eder, Maria Magdalena; Bárdossy, András (Prof. Dr. rer. nat. Dr.-Ing.)
    Lakes are complex ecosystems that are on the one hand more or less enclosed by defined borders, but are on the other hand connected to their environment, especially to their catchment and the atmosphere. This study is examinig the climate sensitivity of large lakes using Lake Constance as an example. The lake is situated in Central Europe at the northern edge of the Alps, at the boundary of Austria, Germany and Switzerland. The maximum depth is 235 m, the total surface area is 535 km³ and the total volume 48.45 km². The numerical simulations in this study have been performed with the lake model system ELCOM-CAEDYM. The model system was validated using three different data sets: Observations of a turbid underflow after a flood flow in the main tributary, a lake-wide field campaign of temperature and phytoplankton, and long term monitoring data of temperature and oxygen in the hypolimion. The model system proved to be able to reproduce the effects of a flood flow in the largest tributary,. A huge turbid underflow was observed flowing into the main basin after an intense rain event in the Alps in August 2005. A numerical experiment showed the influence of the earth’s rotation on the flow path of the riverine water within the lake. The model also reproduced the temperature evolution and distribution and to some extent the phytoplankton patchiness measured in spring 2007 during an intensive field campaign. The model reproduced the measured time series of temperature and oxygen in the deep hypolimnion measured in the years 1980-2000. This indicates, that the vertical mixing and the lake’s cycle of mixing and stratification was reproduced correctly. Based on the model set-up validated with long term monitoring data, climate scenario simulations were run. The main focus was on temperature and oxygen concentrations in the hypolimnion, the cycle of stratification and mixing, and the heat budget of the lake. The meteorological boundary conditions for the climate scenario simulations were generated using a weather generator instead of downscaling climate projections from Global Climate Models. This approach gives the possibility to change different characteristics of the climate independently. The resulting lake model simulations are ”what-if”-scenarios rather than predictions, helping to obtain a deeper understanding of the processes in the lake. The main results can be summarized as follows: An increase in air temperature leads to an increase in water temperature, especially in the upper layers. The deep water temperature increases as well, but not to the same extent as the temperature of the epilimnion. This results in an increased vertical temperature difference. Due to the non-linear shape of the temperature-density curve, the difference in density grows even stronger than the temperature difference. This results in enhanced stratification stability, and consequently in less mixing. Complete mixing of the lake becomes more seldom in a warmer climate, but even in the scenario simulations with air temperature increased by 5 °C, full circulation took place every 3-4 years. Less complete mixing events lead to less oxygen in the hypolimnion. Additionally, as many biogeochemical processes are temperature dependant, the oxygen consumption rate is larger in warmer water. In the context of this study, climate variability is defined as episodes with daily average air temperatures deviating from the long-term average for this day of year. The episodes can be described by their duration in days and their amplitude in °C. Changes in climate variability can have very different effects, depending on the average air and water temperatures. The effects are stronger in lakes with higher water temperatures: For the hypolimnetic conditions, the seasonality in warming is important: Increasing winter air temperatures have a much stronger effect on the water temperatures in the lake than increasing summer temperatures. The combined effects of a warmer climate and higher nutrient concentrations enhances oxygen depletion in the hypolimnion. Finally, it is discussed, to what extent the results of this study are transferrable to other lakes. The reactions of Lake Constance to climate change are determined by the physical, geographical and ecological characteristics of the lake. Hydrodynamic reactions are defined by the mixing type, water temperatures and the residence time of the water in the lake. Furthermore it is important that the lake is almost never completely ice-covered, and that there are only minor salinity differences. The reactions of the ecosystem are determined also by the oligotrophic state of the lake. Results of this study thus can be transferred to other deep, monomictic, oligotrophic fresh water lakes, as for example the other large perialpine lakes of glacial origin.
  • Thumbnail Image
    ItemOpen Access
    Parallele Numerische Simulation instationärer Probleme mit adaptiven Methoden auf unstrukturierten Gittern
    (2001) Lang, Stefan; Helmig, Rainer (Prof. Dr. Ing.)
    Ziel dieser Arbeit ist die Numerische Simulation von partiellen Differentialgleichungen mit den aktuellen Methoden: Mehrgitterverfahren, lokale Gitteradaption und Parallelität. Besonders Aspekte des Softwareengineerings und der Implementierung werden im Detail betrachtet. Diese Methoden werden durch paralleles I/0 und parallele Graphik zu einer skalierbaren Toolkette erweitert. Anhand von drei Gleichungstypen: Dichtegetriebene Grundwasserströmung, Zweiphasen-Strömung und Elastoplastizität wird die Leistungsfähigkeit der realisierten Simulationsplattform untersucht. Beispielsweise konnte bei einer Simulation auf 512 Prozessoren eine Beschleungiung von mehr als 300 erzielt werden.
  • Thumbnail Image
    ItemOpen Access
    Numerical investigations of the role of hysteresis in heterogeneous two-phase flow systems
    (2008) Papafotiou, Alexandros; Helmig, Rainer (Prof. Dr.-Ing.)
    Various groundwater applications often involve the flow of two immiscible fluids in heterogeneous porous media. In problems that involve the assessment of travel times of hazardous substances in the unsaturated zone or monitoring and predicting the fate of groundwater contaminations, efficient tools and approaches need to be developed to achieve accurate predictions of two-phase flow behavior in heterogeneous porous media. However, this is not an easy task, as heterogeneities -observed on different spatial scales- have a strong influence on the distribution of the fluid phases and therefore form a significant source of uncertainty. Moreover, the prediction of two-phase flow in heterogeneous porous media becomes complicated through alternating drainage and imbibition conditions taking place in the complex heterogeneous pore structure that lead to hysteresis effects in the capillary pressure-saturation relationship. Numerical simulations are widely used to predict hysteretic two-phase flow in heterogeneous porous media in lab or field applications. This approach, however, demands good knowledge on the hydraulic properties of the materials that form the heterogeneous structures involved in the application. Traditionally, the hydraulic properties and the hysteretic behavior of porous media are empirically determined on the local scale with lab experiments conducted on material samples. On the other hand, alternative methods suggest the direct determination of hydraulic properties, including hysteretic capillary pressure-saturation relationships, from a pore-scale consideration. This is done using available information on the pore structure of a material. Nevertheless, it remains unclear how accurate predictions can be in problems of hysteretic two-phase flow in porous media, even when advanced state-of-the-art methods are used on different scales for the determination of the hydraulic properties. The first part of this thesis deals with the implementation of two hysteresis concepts in a numerical model for the simulation of two-phase flow in heterogeneous porous media. Special attention is given on the combination of the hysteresis concepts with a capillary interface condition for the treatment of material interfaces and the approximation of saturation discontinuities due to heterogeneities. This provides an efficient and consistent approach for the prediction of hysteretic two-phase flow in heterogeneous porous media. In the second part, predictions made with the numerical implementations of the hysteresis concepts are compared to measurements from a 1-D monitored transient experiment, that involves successive alternating drainage and imbibition conditions. Conclusions related to the importance of hysteresis and the possibilities of the applied hysteresis concepts are drawn. Furthermore, the comparative study presents remarks on the beneficial combination of different approaches -from the modeling and the experimental viewpoint- that lead to reliable predictions on hysteretic two-phase flow. The last part of this work focuses on predictions of hysteretic two-phase flow made with hydraulic properties determined on different spatial scales. In this case, numerical simulations of drainage and imbibition are compared to experimental measurements in a 3-D heterogeneous structure. The hydraulic properties that are used as input for the numerical simulations are determined with two approaches: -On the local scale with multistep outflow/inflow experiments. -On the pore scale with advanced image analysis and lattice Boltzmann flow simulations in mapped sand geometries. The comparative study in this case reveals the possibilities for predictions of hysteretic two-phase flow made with hydraulic properties determined on different scales (local and pore scale), indicates sensitivities in such hydraulic properties, reveals the significant influence of material interfaces in heterogeneous structures and finally detects the apparent temporal- and spatial-scale dependency of non-wetting phase trapping effects during imbibition processes. Conclusions related to the observed hysteresis are drawn, considering the assumptions and the conceptual differences involved in the different approaches. Finally the comparison between simulations and experiment triggers a discussion on the potentials of our modeling approaches in the case of heterogeneous structures, shows how one needs to approach applications of hysteretic two-phase flow in heterogeneous porous media and what aspects must be taken into account when dealing with different scales.
  • Thumbnail Image
    ItemOpen Access
    Die Quellstärke in der Sickerwasserprognose : Möglichkeiten und Grenzen von Labor- und Freilanduntersuchungen
    (2010) Mackenberg, Sylvia; Metzger, Jörg W. (Prof. Dr. rer. nat. habil.)
    Den Umgang mit kontaminierten Böden und Standorten im Rahmen des Boden- und Grundwasserschutzes regeln in Deutschland das Bundes-Bodenschutzgesetz und die Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV). Die Durchführung einer Sickerwasserprognose dient der Gefährdungsabschätzung einer Grundwasserkontamination durch Bodenbelastungen. Gemäß der BBodSchV umfasst sie Untersuchungen zur Mobilisierbarkeit von Stoffen durch das Bodensickerwasser sowie eine Transportbetrachtung der gelösten Stoffe bis zum Ort der Beurteilung, die Grenze zwischen der ungesättigten und der gesättigten Bodenzone. Neben dieser bundesweit geltenden Verordnung existieren landesinterne Regelungen sowie Verfahrensvorschläge in der Baustoffbranche zum Umgang mit Baustoff und Recyclingprodukten. Allen Fragestellungen gemein ist die Abschätzung der im Sickerwasser gelösten Stoffkomponenten sowie ihrer Konzentrationen nach dem Passieren eines kontaminierten Materials, was als Quellstärke bezeichnet wird. Ziel der vorliegenden Arbeit war es, Aussagen über die Vergleichbarkeit der in diesen Testverfahren erzielbaren Ergebnisse abzuleiten. Weiterhin stand die potenzielle Übertragbarkeit von Ergebnissen, die in Laborversuchen zur Bestimmung der Quellstärke im Rahmen einer Sickerwasserprognose ermittelt werden, auf reale Verhältnisse im Fokus der Untersuchungen. Basierend auf einer Beurteilung der Praxisrelevanz der einzelnen Laborverfahren sollte abschließend ein Verfahrensvorschlag zur Bestimmung der Quellstärke erarbeitet werden: In Batchversuchen wurden der Einfluss des Wasser-Feststoffverhältnisses (WFV) auf die qualitative und quantitative stoffliche Zusammensetzung des Eluats sowie die potenzielle Mobilisierbarkeit von Schadstoffe untersucht. Die Erhöhung des WFV bei anorganischen Stoffkomponenten führte in der Regel zu einer Verringerung der Stoffkonzentration. Im Gegensatz dazu wurden bei Materialien, die mit polycyclischen aromatischen Kohlenwasserstoffen (PAK) kontaminiert waren, unabhängig vom jeweiligen WFV immer konstante PAK-Konzentrationen gemessen. Vergleichbare Ergebnisse wurden in Laborsäulenversuchen bei voller Wassersättigung erzielt. Aufgetragen über das WFV nehmen die Konzentrationen der meisten anorganischen Stoffkomponenten bei stationären Versuchsbedingungen mit zunehmender Versuchsdauer ab. Die PAK-Konzentrationen wiesen konstante Werte auf. Im Rahmen der Untersuchungen zum Einfluss der Schichthöhe wurde die absolute Kontaktzeit zwischen dem Eluat und dem Untersuchungsmaterial (Aufenthaltsdauer des Eluats in der Säule) variiert. Bei gleichem WFV entstanden keine Konzentrationsunterschiede aufgrund einer größeren Schichthöhe. Auch die Verringerung der Flussrate und damit eine Erhöhung der spezifischen Kontaktzeit (direkter Kontakt zwischen Eluat und Bodenmatrix pro Wegstrecke) führte bei anorganischen Schadstoffen nur in wenigen Fällen zu einer Konzentrationsänderung. Für PAK wurden unterschiedliche Ergebnisse in Abhängigkeit des pH-Werts erzielt. Bei einem pH-Wert von 8 wurde eine Konzentrationsabnahme um mehrere Größenordnungen registriert, bei einem pH-Wert von 12 zeigte sich keine Änderung der Konzentration. Diese Unterschiede wurden auf mikrobiologische Aktivität bei einem pH-Wert von 8 zurückgeführt, die in einem basischen Milieu weitestgehend unterbunden wird. Um die Übertragbarkeit der Ergebnisse von Laboruntersuchungen auf Feldsituationen beurteilen zu können, wurden Versuche mit Laborlysimetern und Freilandsäulen unter Teilsättigung durchgeführt. Für PAK führen Laborversuche häufig zu einer Überschätzung des Gefährdungspotenzials, da ein biologischer Abbau bei vollständiger Wassersättigung stark gehemmt wird. Die im Labor ermittelten Konzentrationen anorganischer Stoffkomponenten stimmten größenordnungsmäßig mit den Konzentrationen der Freilandversuche überein. Infolge natürlich wechselnder Niederschläge und Temperaturschwankungen wichen die im Freiland gemessenen Konzentrationen bei gleichem WFV immer wieder von den Konzentrationen der Laborversuche unter stationären Bedingungen ab. Basierend auf den Ergebnissen der Untersuchungen wurde ein Vorschlag für ein praktisches Verfahren zur Bestimmung der Quellstärke ausgearbeitet, der die Aspekte Wirtschaftlichkeit und Praktikabilität der Durchführung, insbesondere im Hinblick auf eine akzeptable Versuchsdauer, vereint. Das stufenweise Vorgehen unterscheidet zwischen Materialien die mit anorganischen Schadstoffen bzw. Materialien die mit PAK belastet sind. Zu Beginn der Quellstärkebestimmung von Materialien mit anorganischen Schadstoffen stehen einfache Batchversuche. In Abhängigkeit der daraus erzielbaren Ergebnisse folgen gegebenenfalls Laborsäulenuntersuchungen mit variierbaren Fließbedingungen. Die Quellstärke PAK-haltiger Materialien wird in Abhängigkeit ihres jeweiligen pH-Werts ebenfalls anhand einfacher Batchversuche oder anhand von aufwändigeren Laborsäulenuntersuchungen mit einer Wasserteilsättigung der eingebauten Materialschicht ermittelt.
  • Thumbnail Image
    ItemOpen Access
    Simulation von Mehrphasenvorgängen in porösen Medien unter Einbeziehung von Hysterese-Effekten
    (1999) Sheta, Hussam; Helmig, Rainer (Prof. Dr.)
    Die vorliegende Arbeit entstand im Rahmen des Forschungsprogramms der Versuchseinrichtung zur Grundwasser- und Altlastensanierung VEGAS. Sie beschäftigt sich mit einem zentralen Thema zur Beschreibung von Transport und Schadstoffausbreitung im natürtlichen Untergrund.
  • Thumbnail Image
    ItemOpen Access
    Numerical simulation of CO2 sequestration in geological formations
    (2007) Bielinski, Andreas; Helmig, Rainer (Prof. Dr.-Ing.)
    CO2 sequestration in geological formations is regarded as a measure for reducing the emissions of this greenhouse gas into the atmosphere. With this method, carbon dioxide is captured at large point sources, e.g. coal-fired power plants, and injected into subsurface reservoirs for long-term storage. Such formations can be exploited gas or oil reservoirs or saline aquifers. The latter have the advantage that they are abundant in many places and provide large storage volumes. In this study, the topic of CO2 sequestration in saline aquifers is addressed using numerical methods. A model concept is developed, taking into account a CO2-rich phase, a brine phase and the rock matrix as a rigid porous medium. The focus is on the correct description of the fluid properties including super- and subcritical properties of the CO2-rich phase. Mutual dissolution of the components in the phases and the effect of the salt content in the aqueous phase on dissolution behavior and fluid properties are considered. Non-isothermal effects are taken into account. Advective and diffusive flow processes are included into the model concept. Multi-phase behavior is considered using relative permeability and capillary pressure functions. The set-up of the mathematical model and its numerical implementation in the numerical simulator MUFTE-UG are described in detail. Various simulations show the capability of the developed model and give insight into principle processes that occur during CO2 sequestration in geological formations. The short-term carbon dioxide plume propagation during the injection process is investigated. The long-term behavior is studied in another example considering the dissolution of a CO2 plume in the subsurface over a period of 100 years. Furthermore, non-isothermal processes are investigated in a simulation example. This work provides a tool which is capable of reproducing and predicting many of the processes that occur during CO2 sequestration in geological formations. It can be used for principle studies as well as for the field cases that this technology is going to be applied to. It provides the foundation for further extensive research into many open questions to be addressed in the future.
  • Thumbnail Image
    ItemOpen Access
    Modernization criteria assessment for water resources planning; Klamath Irrigation Project, U.S.
    (2008) Freeman, Beau J.; Bárdossy, András (Prof. Dr. rer. nat. Dr.-Ing.)
    Agricultural irrigation is the largest consumer of diverted surface water and groundwater resources in the world, with major regions becoming critically water deficit. Agriculture in the western United States (US) and elsewhere has reached the point where the demands from irrigators, domestic users, and various commercial interests for allocated quantities and qualities are beyond acceptable levels for environmental needs in many river basins. Despite decades of investment in irrigation projects by governments, foreign lending agencies, and development banks in numerous countries, irrigation performance remains unsatisfactorily low and in many places progress is being reversed due to water logging, salinization, over-drafting of aquifers, environmental degradation, and infrastructure deterioration. Maintaining current irrigation practices will lead to worsening environmental and economic consequences. To restore healthy ecosystems and sustain irrigated agriculture, irrigation modernization should be promoted as a key component of basin-level water management to effectively balance competing water needs. Improvements in the technical and economic efficiency of irrigation water use through modernization increase the quantity and quality of freshwater available in a river basin. Significant public and private investments in modernization will be required to facilitate the precise control and monitoring of reallocated flows at different levels of irrigation systems, especially on a real-time basis, and thus provide excellent water delivery service to water districts, end-users, and other commercial and environmental stakeholders. This doctoral study investigates a specific problem that many irrigation professionals and water resources planners will face in the future: how to effectively analyze and make an assessment of irrigation modernization project-alternatives. Selecting the best modernization strategy to pursue from potential project-alternatives in water resources planning is a complex decision-making process. Irrigation modernization alternatives and their impacts involve a variety of diverse stakeholders in the selection of preferred engineering solutions based on subjectively defined criteria (quantitative and qualitative). As a consequence, technical feasibility, environmental, social/community, institutional, political, and economic factors have to be properly assessed as part of water resources planning. This research introduces a strategic decision analysis methodology for the definition, evaluation, ranking, and selection of appropriate modernization strategies in an engineering case study of the Klamath Irrigation Project (89,000 ha). In 2001 a combination of events occurred there that led to one of the most prominent conflicts over water supplies in the U.S. Due to stricter flow requirements put in place to protect fish species and a critical drought, irrigation water was unexpectedly withheld from the majority of farms in the Project, resulting in major economic losses, calling the basis for environmental restrictions into question, and generating intense political controversy. The composite programming approach is applied to develop a project ranking index based on standardized indicators – effective for analyzing the trade-offs associated with balancing technical and water conservation considerations with eco-system health, economics, and risk. This modernization criteria assessment requires defining the management objectives according to the nature of the internal processes and agro-hydrological features of the system, selection of alternative engineering solutions, selection of appropriate decision criteria relevant to the specific water-related problems, and the assignment of desirable and critical threshold values pertinent to each criterion. Input data consist of hydrologic, agronomic, engineering, economic, and political/policy information.
  • Thumbnail Image
    ItemOpen Access
    Stochastische Generierung räumlich zusammenhängender Niederschlagszeitreihen
    (2008) Brommundt, Jürgen; Bárdossy, András (Prof. Dr. rer. nat. Dr.-Ing.)
    Die Arbeit beschreibt die Entwicklung eines Simulators zur Erzeugung simultaner stochastischer Niederschlagszeitreihen, seine Implementierung und erfolgreiche Anwendung. Sie wurde im Rahmen des BWPLUS-Projekts „Erzeugung simultan-synthetischer Niederschlagsreihen in hoher zeitlicher und räumlicher Auflösung für Baden-Württemberg“ durchgeführt. In Baden-Württemberg besteht mit dem stochastischen Niederschlagszeitreihengenerator NiedSim ein System zur Erzeugung 30 Jahre langer Niederschlagszeitreihen in Fünfminutenauflösung zur Verfügung, das am Institut für Wasserbau von Professor Bárdossy entwickelt wurde. Die generierten Reihen werden hauptsächlich zur Dimensionierung und Auslegung von städtischen Kanalnetzen verwendet. Die erzeugten Punktniederschlagszeitreihen sind repräsentativ für das Niederschlagsverhalten an dem Ort, für den sie generiert werden, und die unmittelbare Umgebung. Für größere Gebiete werden daher zwei oder mehr simultane Niederschlagszeitreihen benötigt, um die räumliche Variabilität des Niederschlags zu berücksichtigen und so eine korrekte Nachbildung bei der Generierung zu ermöglichen. Der Generator NiedSim basiert auf einem nicht-parametrischen Generierungsansatz, bei dem aus regionalisierten, ortsspezifischen statistischen Niederschlagseigenschaften zufällig eine Reihe von Stundenwerten erzeugt wird, die in einer Optimierung solange rearrangiert werden, bis die Zeitreihe die gewünschten - langfristig beobachteten - statistischen Eigenschaften besitzt. Anschließend kann die erzeugte Reihe zu Fünfminutenwerten disaggregiert werden, was nach einem ähnlichen Schema abläuft. Mit dieser Methodik können bei der Generierung beliebige Eigenschaften, also auch räumliche Eigenschaften, berücksichtigt werden. Für die flächendeckende Generierung zusammenhängender Niederschlagszeitreihen in ganz Baden-Württemberg müssen diese räumlichen Eigenschaften ebenfalls regionalisiert werden, damit sie für beliebige Stationspaare zur Verfügung stehen. Insgesamt wurden drei Eigenschaften definiert und untersucht. Der allgemeine Zusammenhang der simultanen Niederschlagszeitreihen wurde durch die Korrelation auf Tages- und Stundenskala erfasst. Zur Regionalisierung der Korrelation wurde ein neuer Kriging-Ansatz entwickelt. In dem vierdimensionalen Raum, den die vier Ortskoordinaten der Stationspaare aufspannen, wird die Korrelation direkt aus den Messdaten aller beobachteten Stationspaare mit Ordinary und External Drift Kriging berechnet. Beide Techniken lieferten sehr gute Interpolationsergebnisse. Umfangreiche Versuche für die Regionalisierung auch Radardaten zu verwenden führten nicht zu befriedigenden Ergebnisse. Aus der späteren Anwendung der erzeugten Niederschlagszeitreihen in hydrologischen Modellen ergibt sich, dass die Nachbildung von Extrema und größeren Niederschlägen besondere Bedeutung haben muss, da diese die schlimmsten Auswirkungen haben. Hierzu wurde aus Radardaten die räumliche Abminderung der Spitzen von Extremereignissen in Abhängigkeit von Fläche, Dauerstufe und Jährlichkeit berechnet. Des Weiteren hat die Zugrichtung und -geschwindigkeit von Niederschlagsfeldern maßgeblichen Einfluss auf die Abflussreaktion eines Einzugsgebiets. Das Zugverhalten wurde ebenfalls aus Radardaten ermittelt und in Abhängigkeit von der herrschenden Großwetterlage definiert, wodurch es auch in Zeiträumen ohne Radarbeobachtung beschrieben werden kann, da die herrschende Großwetterlage lückenlos als Aufzeichnung vorliegt. Das Generierungs- und Disaggregationsschema wurde anschließend so erweitert, dass es diese drei zeitlich-räumlichen Informationen bei der simultanen Generierung berücksichtigt. An Hand von drei Fallstudien wurde der entwickelte Zeitreihengenerator abschließend getestet. Zunächst wurden Aufzeichnungen dreier Messstationen mit drei dazu generierten simultanen Zeitreihen verglichen. Anschließend wurde im Stadtgebiet von Karlsruhe der Einfluss einer ungleichmäßigen Überregnung auf die Stadtentwässerung untersucht. Abschließend wurde der Einsatz des simultanen Generators bei der hydrologischen Modellierung kleiner Einzugsgebiete erprobt. In allen drei Fallstudien erwies sich der erstellte Generator als nützliches Werkzeug zur genaueren Nachbildung der im natürlichen Niederschlag beobachteten Variabilität. Mit Hilfe der räumlich differenzierten Eingangsdaten kann eine Schwäche bei der möglichst realitätsnahen Modellierung des Niederschlag-Abfluss-Verhaltens abgemildert werden. Zum Anderen können unbekannte Reserven existierender Systeme quantifiziert und das allgemeine Systemverständnis verbessert werden.