02 Fakultät Bau- und Umweltingenieurwissenschaften
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/3
Browse
150 results
Search Results
Item Open Access Heat transport from atmosphere through the subsurface to drinking‐water supply pipes(2023) Nissler, Elisabeth; Scherrer, Samuel; Class, Holger; Müller, Tanja; Hermannspan, Mark; Osmancevic, Esad; Haslauer, ClausDrinking‐water quality in supply pipe networks can be negatively affected by high temperatures during hot summer months due to detrimental bacteria encountering ideal conditions for growth. Thus, water suppliers are interested in estimating the temperature in their distribution networks. We investigate both experimentally and by numerical simulation the heat and water transport from ground surface into the subsurface, (i.e., above drinking‐water pipes). We consider the meteorological forcing functions by a sophisticated approach to model the boundary conditions for the heat balance at the soil-atmosphere interface. From August to December 2020, soil temperatures and soil moisture were measured dependent on soil type, land‐use cover, and weather data at a pilot site, constructed specifically for this purpose at the University of Stuttgart with polyethylene and cast‐iron pipes installed under typical in situ conditions. We included this interface condition at the atmosphere-subsurface boundary into an integrated non‐isothermal, variably saturated (Richards') the numerical simulator DuMux 3. This allowed, after calibration, to match measured soil temperatures with ±2°C accuracy. The land‐use cover influenced the soil temperature in 1.5 m more than the soil material used for back‐filling the trench above the pipe.Item Open Access High-resolution spatio-temporal measurements of the colmation phenomenon under laboratory conditions(Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart, 2022) Mayar, Mohammad Assem; Wieprecht, Silke (Prof. Dr.-Ing.)The fine sediment infiltration and accumulation into the gravel bed of rivers, the so-called colmation phenomenon, is a pernicious process exacerbated by anthropogenic activities. Owing to the importance and complexity of this phenomenon, it has been widely studied over the last decades. Various devices and methods have been developed to assess this phenomenon, where most of them are destructive and sample-based, resulting in an alteration of the natural conditions. Therefore, non-intrusive techniques, which provide spatial and temporal details with a high-resolution, are required to discretize the mechanisms involved in the colmation process. To address these issues, investigations under laboratory conditions may simplify the complexity of nature and enable individual and exactly defined boundary conditions to be investigated. Therefore, this thesis aims at (i) developing a non-intrusive and undisturbed measurement method for the high-resolution spatio-temporal measurements of the sediment infiltration processes and the development of sediment accumulation in an artificial river bed under laboratory conditions, (ii) applying this method to certain experiments for the assessment of the effects of different boundary conditions on sediment infiltration, and (iii) investigating the colmation phenomenon (also known as clogging) of gravel beds. For this purpose, the gamma-ray attenuation method is used together with an artificial gravel bed arranged from the spheres with various diameters and placed in a laboratory flume. This new method works based on the gamma radiation that passes through the infiltrated sediments, water, and bed spheres, in which the gamma-ray attenuation is linked to the variations of the infiltrated sediments’ quantity. The main simplification of this approach is that gravel beds are represented by the combinations of different-sized spheres. This gives the opportunity to fully distinguish infiltrating sediments from the bed material, reduce the complexity of the natural environment, and allows for repetitive measurements of the same position with different boundary conditions. From the results of this study, first, the gamma-ray attenuation measurement method was optimized to resolve the inconsistencies in the measurements. Subsequently, the concept of the non-intrusive and undisturbed measurement is proved through box experiments. Additional reproducibility experiments in the laboratory flume, for a similar bed structure, showed only small deviations between two experiments with the same setup. Consequently, the established technique was used in a series of experiments to evaluate the effects of different supply rates, total supply masses, and sediment particle size boundary conditions on the sediment infiltration and colmation processes. Vertical profiles of the infiltrated sediment were quantified through high spatial resolution measurements. Furthermore, to evaluate the infiltrating sediment accumulation development, and the temporal variations of the infiltrated sediments, the vertical profile measurements were first repeated after a specific time-period to track interval-averaged variations in all positions of the vertical axis. Next, a specific position of the vertical axis was measured continuously during the entire experiment in a high temporal resolution. The measured vertical profiles illustrate the vertical distribution, colmation, and unimpeded percolation of the infiltrated sediments. The dynamic one-point measurement precisely identifies the three phases (the start of the pore-filling, the required time to fill the pore, and the final amount of infiltrated sediments including natural fluctuation during the ongoing experiments) of the sediment infiltration or the possible clogging. As a limitation, the gamma-ray attenuation system’s current configuration only works in artificial gravel beds because of the given density difference between infiltrated sediments and the artificial bed structure. Intense radiations that pass through the natural bed's thickness are capable of detecting a significant amount of infiltrated sediments. However, small amounts of infiltrated sediments will create only a minimal shift in attenuation, which might be confused with the statistical error. In addition, the legal restriction against using radioactive material in the natural environment is another reason for not applying it in the field. Furthermore, the gamma-ray attenuation method cannot resolve the sediment distribution in the measurement horizon and provides an integrative result for each measurement position. In addition, if a mixture of silt, clay, and sand is supplied to the experiment, the gamma-ray attenuation system will produce a bulk result of all the infiltrated materials. To conclude, despite the limitations mentioned above, the gamma-ray attenuation method offers a unique opportunity for the non-intrusive and undisturbed measurements of the sediment infiltration or the special case of colmation, with a high spatio-temporal resolution. This method has the potential to quantify the investigated processes on a millimetric spatial scale, if the measurement time is not a constraint, or vice versa, in a high temporal resolution (seconds) for a specific position, if spatial scale is not important. Moreover, the gamma-ray attenuation approach can simultaneously measure the longitudinal distribution of the sedimentological processes, if multiple instruments or a single device with several radiation-emitting-holes is in operation. Last, but not least, rather than the spheres, artificial gravel beds could be made of any substance with a composition significantly different from the infiltrating sediments, and the boundary conditions of the experiments can be improved in order to attain conditions close to nature. Finally, the gamma-ray attenuation method can be integrated with advanced flow measurement instruments such as Particle Image Velocimetry (PIV) and other high-resolution endoscopic devices to track the behavior of fine sediment infiltration and its clogging process in the porous gravel beds as it occurs in nature.Item Open Access Magnetic resonance imaging of water content and flow processes in natural soils by pulse sequences with ultrashort detection(2021) Haber-Pohlmeier, Sabina; Caterina, David; Blümich, Bernhard; Pohlmeier, AndreasMagnetic resonance imaging is a valuable tool for three-dimensional mapping of soil water processes due to its sensitivity to the substance of interest: water. Since conventional gradient- or spin-echo based pulse sequences do not detect rapidly relaxing fractions of water in natural porous media with transverse relaxation times in the millisecond range, pulse sequences with ultrafast detection open a way out. In this work, we compare a spin-echo multislice pulse sequence with ultrashort (UTE) and zero-TE (ZTE) sequences for their suitability to map water content and its changes in 3D in natural soil materials. Longitudinal and transverse relaxation times were found in the ranges around 80 ms and 1 to 50 ms, respectively, so that the spin echo sequence misses larger fractions of water. In contrast, ZTE and UTE could detect all water, if the excitation and detection bandwidths were set sufficiently broad. More precisely, with ZTE we could map water contents down to 0.1 cm3/cm3. Finally, we employed ZTE to monitor the development of film flow in a natural soil core with high temporal resolution. This opens the route for further quantitative imaging of soil water processes.Item Open Access Comparison study of phase-field and level-set method for three-phase systems including two minerals(2022) Kelm, Mathis; Gärttner, Stephan; Bringedal, Carina; Flemisch, Bernd; Knabner, Peter; Ray, NadjaWe investigate reactive flow and transport in evolving porous media. Solute species that are transported within the fluid phase are taking part in mineral precipitation and dissolution reactions for two competing mineral phases. The evolution of the three phases is not known a-priori but depends on the concentration of the dissolved solute species. To model the coupled behavior, phase-field and level-set models are formulated. These formulations are compared in three increasingly challenging setups including significant mineral overgrowth. Simulation outcomes are examined with respect to mineral volumes and surface areas as well as derived effective quantities such as diffusion and permeability tensors. In doing so, we extend the results of current benchmarks for mineral dissolution/precipitation at the pore-scale to the multiphasic solid case. Both approaches are found to be able to simulate the evolution of the three-phase system, but the phase-field model is influenced by curvature-driven motion.Item Open Access Optimal design of experiments to improve the characterisation of atrazine degradation pathways in soil(2021) Chavez Rodriguez, Luciana; González‐Nicolás, Ana; Ingalls, Brian; Streck, Thilo; Nowak, Wolfgang; Xiao, Sinan; Pagel, HolgerContamination of soils with pesticides and their metabolites is a global environmental threat. Deciphering the complex process chains involved in pesticide degradation is a prerequisite for finding effective solution strategies. This study applies prospective optimal design (OD) of experiments to identify laboratory sampling strategies that allow model‐based discrimination of atrazine (AT) degradation pathways. We simulated virtual AT degradation experiments with a first‐order model that reflects a simple reaction chain of complete AT degradation. We added a set of Monod‐based model variants that consider more complex AT degradation pathways. Then, we applied an extended constraint‐based parameter search algorithm that produces Monte‐Carlo ensembles of realistic model outputs, in line with published experimental data. Differences between‐model ensembles were quantified with Bayesian model analysis using an energy distance metric. AT degradation pathways following first‐order reaction chains could be clearly distinguished from those predicted with Monod‐based models. As expected, including measurements of specific bacterial guilds improved model discrimination further. However, experimental designs considering measurements of AT metabolites were most informative, highlighting that environmental fate studies should prioritise measuring metabolites for elucidating active AT degradation pathways in soils. Our results suggest that applying model‐based prospective OD will maximise knowledge gains on soil systems from laboratory and field experiments.Item Open Access Effects of enzymatically induced carbonate precipitation on capillary pressure : saturation relations(2022) Hommel, Johannes; Gehring, Luca; Weinhardt, Felix; Ruf, Matthias; Steeb, HolgerLeakage mitigation methods are an important part of reservoir engineering and subsurface fluid storage, in particular. In the context of multi-phase systems of subsurface storage, e.g., subsurface CO2 storage, a reduction in the intrinsic permeability is not the only parameter to influence the potential flow or leakage; multi-phase flow parameters, such as relative permeability and capillary pressure, are key parameters that are likely to be influenced by pore-space reduction due to leakage mitigation methods, such as induced precipitation. In this study, we investigate the effects of enzymatically induced carbonate precipitation on capillary pressure-saturation relations as the first step in accounting for the effects of induced precipitation on multi-phase flow parameters. This is, to our knowledge, the first exploration of the effect of enzymatically induced carbonate precipitation on capillary pressure-saturation relations thus far. First, pore-scale resolved microfluidic experiments in 2D glass cells and 3D sintered glass-bead columns were conducted, and the change in the pore geometry was observed by light microscopy and micro X-ray computed tomography, respectively. Second, the effects of the geometric change on the capillary pressure-saturation curves were evaluated by numerical drainage experiments using pore-network modeling on the pore networks extracted from the observed geometries. Finally, parameters of both the Brooks-Corey and Van Genuchten relations were fitted to the capillary pressure-saturation curves determined by pore-network modeling and compared with the reduction in porosity as an average measure of the pore geometry’s change due to induced precipitation. The capillary pressures increased with increasing precipitation and reduced porosity. For the 2D setups, the change in the parameters of the capillary pressure-saturation relation was parameterized. However, for more realistic initial geometries of the 3D samples, while the general patterns of increasing capillary pressure may be observed, such a parameterization was not possible using only porosity or porosity reduction, likely due to the much higher variability in the pore-scale distribution of the precipitates between the experiments. Likely, additional parameters other than porosity will need to be considered to accurately describe the effects of induced carbonate precipitation on the capillary pressure-saturation relation of porous media.Item Open Access Porosity and permeability alterations in processes of biomineralization in porous media - microfluidic investigations and their interpretation(Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart, 2022) Weinhardt, Felix; Class, Holger (apl. Prof. Dr.-Ing)Motivation: Biomineralization refers to microbially induced processes resulting in mineral formations. In addition to complex biomineral structures frequently formed by marine organisms, like corals or mussels, microbial activities may also indirectly induce mineralization. A famous example is the formation of stromatolites, which result from biofilm activities that locally alter the chemical and physical properties of the environment in favor of carbonate precipitation. Recently, biomineralization gained attention as an engineering application. Especially with the background of global warming and the objective to reduce CO2 emissions, biomineralization offers an innovative and sustainable alternative to the usage of conventional Portland cement, whose production currently contributes significantly to global CO2 emissions. The most widely used method of biomineralization in engineering applications, is ureolytic calcium carbonate precipitation, which relies on the hydrolysis of urea and the subsequent precipitation of calcium carbonate. The hydrolysis of urea at moderate temperatures is relatively slow and therefore needs to be catalyzed by the enzyme urease to be practical for applications. Urease can be extracted from plants, for example from ground jack beans, and the process is consequently referred to as enzyme-induced calcium carbonate precipitation (ECIP). Another method is microbially induced calcium carbonate precipitation (MICP), which uses ureolytic bacteria that produce the enzyme in situ. EICP and MICP applications allow for producing various construction materials, stabilizing soils, or creating hydraulic barriers in the subsurface. The latter can be used, for example, to remediate leakages at the top layer of gas storage reservoirs, or to contain contaminant plumes in aquifers. Especially when remediating leakages in the subsurface, the most crucial parameter to be controlled is its intrinsic permeability. A valuable tool for predicting and planning field applications is the use of numerical simulation at the scale of representative elementary volumes (REV). For that, the considered domain is subdivided into several REV’s, which do not resolve the pore space in detail, but represent it by averaged parameters, such as the porosity and permeability. The porosity describes the ratio of the pore space to the considered bulk volume, and the permeability quantifies the ease of fluid flow through a porous medium. A change in porosity generally also affects permeability. Therefore, for REV-scale simulations, constitutive relationships are utilized to describe permeability as a function of porosity. There are several porosity-permeability relationships in the literature, such as the Kozeny-Carman relationship, Verma-Pruess, or simple power-law relationships. These constitutive relationships can describe individual states but usually do not include the underlying processes. Different boundary conditions during biomineralization may influence the course of porosity-permeability relationships. However, these relationships have not yet been adequately addressed. Pore-scale simulations are, in principle, very well suited to investigate pore space changes and their effects on permeability systematically. However, these simulations also rely on simplifications and assumptions. Therefore, it is essential to conduct experimental studies to investigate the complex processes during calcium carbonate precipitation in detail at the pore scale. Recent studies have shown that microfluidic methods are particularly suitable for this purpose. However, previous microfluidic studies have not explicitly addressed the impact of biomineralization on hydraulic effects. Therefore, this work aims to identify relevant phenomena at the pore scale to conclude on the REV-scale parameters, porosity and permeability, and their relationship. Contributions: This work comprises three publications. First, a suitable microfluidic setup and workflow were developed in Weinhardt et al. [2021a] to study pore space changes and the associated hydraulic effects reliably. This paper illustrated the benefits and insights of combining optical microscopy and micro X-ray computed tomography (micro XRCT) with hydraulic measurements in microfluidic chips. The elaborated workflow allowed for quantitative analysis of the evolution of calcium carbonate precipitates in terms of their size, shape, and spatial distribution. At the same time, their influence on differential pressure could be observed as a measure of flow resistance. Consequently, porosity and permeability changes could be determined. Along with this paper, we published two data sets [Weinhardt et al., 2021b, Vahid Dastjerdi et al., 2021] and set the basis for two other publications. In the second publication [von Wolff et al., 2021], the simulation results of a pore-scale numerical model, developed by Lars von Wolff, were compared to the experimental data of the first paper [Weinhardt et al., 2021b]. We observed a good agreement between the experimental data and the model results. The numerical studies complemented the experimental observations in allowing for accurate analysis of crystal growth as a function of local velocity profiles. In particular, we observed that crystal aggregates tend to grow toward the upstream side, where the supply of reaction products is higher than on the downstream side. Crystal growth during biomineralization under continuous inflow is thus strongly dependent on the locally varying velocities in a porous medium. In the third publication [Weinhardt et al., 2022a], we conducted further microfluidic experiments based on the experimental setup and workflow of the first contribution and published another data set [Weinhardt et al., 2022b]. We used microfluidic cells with a different, more realistic pore structure and investigated the influence of different injection strategies. We found that the development of preferential flow paths during EICP application may depend on the given boundary conditions. Constant inflow rates can lead to the development of preferential flow paths and keep them open. Gradually reduced inflow rates can mitigate this effect. In addition, we concluded that the coexistence of multiple calcium carbonate polymorphs and their transformations could influence the temporal evolution of porosity-permeability relationships.Item Open Access Modellierung von Bodenerosion und Sedimentaustrag bei Hochwasserereignissen am Beispiel des Einzugsgsgebiets der Rems(Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart, 2022) Schönau, Steffen; Bárdossy, András (Prof. Dr. rer. nat. Dr.-Ing.)Die vorliegende Dissertation untersucht Bodenerosion und Sedimentaustrag bei Hochwasserereignissen und Starkniederschlägen im Einzugsgebiet der Rems (Flussgebiet Neckar, Stromgebiet Rhein). Es werden die Grundlagen des Zusammenspiels von (Stark-) Niederschlag, Hochwasser und Sturzfluten, Bodenerosion und Sedimentaustrag sowie deren messtechnische und modellbasierte Erfassung dargestellt. Die Anwendung empirischer Modellansätze im Untersuchungsgebiet beinhaltet Modellparametrisierung, -kalibrierung und -validierung sowie Regionalisierung für die Übertragbarkeit auf unbeobachtete Gebiete. Es erfolgt eine Untersuchung des räumlichen Zusammenhangs der flächenhaften Eingangsdaten und Modellergebnisse sowie die Beurteilung der Wirkung von konservierender Bodenbearbeitung auf die Bodenabtrags- und Sedimentaustragsschätzungen. Es werden sowohl langandauernde advektive, zu Flusshochwasser führende Niederschlagsereignisse betrachtet als auch kurzzeitige konvektive Sommerereignisse, die nur zu wenig Abfluss oder aber auch zu Sturzfluten führen. Mit der entwickelten Methodik können saisonale und gebietsspezifische Eigenheiten wie Niederschlagscharakteristika, Landnutzung und Landbedeckung sowie Anfangsbodenfeuchte berücksichtigt werden. Ein Ergebnis ist die Bereitstellung von Eingangsdaten für die Optimierung der Steuerung von Hochwasserrückhaltebecken und Speichern zur gezielten Retention stofflicher Belastungen. Teile der Untersuchungen für diese Dissertation haben ihren Ursprung im RIMAX-Verbundvorhaben "Entwicklung eines integrativen Bewirtschaftungskonzepts für Trockenbecken und Polder zur Hochwasserrückhaltung".Item Open Access Investigations on functional relationships between cohesive sediment erosion and sediment characteristics(Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart, 2021) Beckers, Felix; Wieprecht, Silke (Prof. Dr.-Ing.)Item Open Access A surrogate-assisted uncertainty-aware Bayesian validation framework and its application to coupling free flow and porous-medium flow(2023) Mohammadi, Farid; Eggenweiler, Elissa; Flemisch, Bernd; Oladyshkin, Sergey; Rybak, Iryna; Schneider, Martin; Weishaupt, KilianExisting model validation studies in geoscience often disregard or partly account for uncertainties in observations, model choices, and input parameters. In this work, we develop a statistical framework that incorporates a probabilistic modeling technique using a fully Bayesian approach to perform a quantitative uncertainty-aware validation. A Bayesian perspective on a validation task yields an optimal bias-variance trade-off against the reference data. It provides an integrative metric for model validation that incorporates parameter and conceptual uncertainty. Additionally, a surrogate modeling technique, namely Bayesian Sparse Polynomial Chaos Expansion, is employed to accelerate the computationally demanding Bayesian calibration and validation. We apply this validation framework to perform a comparative evaluation of models for coupling a free flow with a porous-medium flow. The correct choice of interface conditions and proper model parameters for such coupled flow systems is crucial for physically consistent modeling and accurate numerical simulations of applications. We develop a benchmark scenario that uses the Stokes equations to describe the free flow and considers different models for the porous-medium compartment and the coupling at the fluid-porous interface. These models include a porous-medium model using Darcy’s law at the representative elementary volume scale with classical or generalized interface conditions and a pore-network model with its related coupling approach. We study the coupled flow problems’ behaviors considering a benchmark case, where a pore-scale resolved model provides the reference solution. With the suggested framework, we perform sensitivity analysis, quantify the parametric uncertainties, demonstrate each model’s predictive capabilities, and make a probabilistic model comparison.