02 Fakultät Bau- und Umweltingenieurwissenschaften
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/3
Browse
3 results
Search Results
Item Open Access Numerical and experimental investigation on concrete splitting failure of anchor channels(2021) Bogdanić, Anton; Casucci, Daniele; Ožbolt, JoškoConcrete splitting failure due to tension load can occur when fastening systems are located close to an edge or corner of a concrete member, especially in thin members. This failure mode has not been extensively investigated for anchor channels. Given the current trend in the construction industry towards more slender concrete members, this failure mode will become more and more relevant. In addition, significantly different design rules in the United States and Europe indicate the need for harmonization between codes. Therefore, an extensive numerical parametric study was carried out to evaluate the influence of member thickness, edge distance, and anchor spacing on the capacity of anchor channels in uncracked and unreinforced concrete members. One of the main findings was that the characteristic edge distance depends on the member thickness and can be larger than 3hef (hef = embedment depth) for thin members. Based on the numerical and experimental test results, modifications of the design recommendations for the splitting failure mode are proposed. Overall, the authors recommend performing the splitting verification separately from the concrete breakout to design anchor channels in thin members more accurately.Item Open Access Numerical and experimental investigation of anchor channels subjected to tension load in composite slabs with profiled steel decking(2022) Bogdanić, Anton; Casucci, Daniele; Ožbolt, JoškoIn curtain wall applications, anchor channels are frequently installed near the edge of composite slabs with profiled steel decking. The complex concrete geometry of these floor slabs affects the capacity of all concrete failure modes, but there are currently no guidelines or investigations available on this topic. The main objective of the present research is to investigate how the position of anchor channels and the complex slab geometry influence the tensile capacity of anchor channels. For this purpose, an extensive numerical parametric study was performed using the 3D nonlinear FE code MASA, which is based on the microplane constitutive model. In order to validate the numerical results, an experimental program was carried out for some of the configurations possible in practice. Based on the results, recommendations are given for the reduction in the tensile capacity of anchor channels in composite slabs with profiled steel decking.Item Open Access Review of testing and qualification of post-installed anchors under seismic actions for structural applications(2021) Stehle, Erik Johannes; Sharma, AkanshuDuring earthquakes, buildings are subjected to loads well beyond their usual demands, resulting in high stresses in the structural components and additional inertial forces coming from the non-structural elements. When post-installed anchors are used to form the connection between non-structural or structural members and the primary reinforced concrete structure, these anchors are also subjected to high seismic demands. To determine whether a post-installed anchor is suitable for such applications, it is assessed for its performance under seismic demands. In this review paper, the current European approach for testing and qualification of post-installed anchors under seismic actions is reviewed and discussed in the context of structural applications where anchors are used to form the connection between structural members that participate in the load-transfer mechanism against seismic loads. The first part of this paper provides a description of the testing procedures and the criteria against which the anchor performance is assessed. The procedures and assessment criteria are discussed regarding the suitability in the case of the above-described structural applications. In the second part, the qualification of anchors under seismic actions is discussed in the light of an upcoming performance-based design approach for anchors. In such an approach, information on the displacement and hysteretic behavior of an anchor in a broader range of the load–displacement curve is of vital importance. Therefore, additional testing approaches might be required in order to supplement the information on anchor performance provided in the current testing procedures. One such testing approach for pulsating tension load is reported.