02 Fakultät Bau- und Umweltingenieurwissenschaften

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/3

Browse

Search Results

Now showing 1 - 10 of 42
  • Thumbnail Image
    ItemOpen Access
    Comparison study of phase-field and level-set method for three-phase systems including two minerals
    (2022) Kelm, Mathis; Gärttner, Stephan; Bringedal, Carina; Flemisch, Bernd; Knabner, Peter; Ray, Nadja
    We investigate reactive flow and transport in evolving porous media. Solute species that are transported within the fluid phase are taking part in mineral precipitation and dissolution reactions for two competing mineral phases. The evolution of the three phases is not known a-priori but depends on the concentration of the dissolved solute species. To model the coupled behavior, phase-field and level-set models are formulated. These formulations are compared in three increasingly challenging setups including significant mineral overgrowth. Simulation outcomes are examined with respect to mineral volumes and surface areas as well as derived effective quantities such as diffusion and permeability tensors. In doing so, we extend the results of current benchmarks for mineral dissolution/precipitation at the pore-scale to the multiphasic solid case. Both approaches are found to be able to simulate the evolution of the three-phase system, but the phase-field model is influenced by curvature-driven motion.
  • Thumbnail Image
    ItemOpen Access
    Linking cortex and contraction : integrating models along the corticomuscular pathway
    (2023) Haggie, Lysea; Schmid, Laura; Röhrle, Oliver; Besier, Thor; McMorland, Angus; Saini, Harnoor
    Computational models of the neuromusculoskeletal system provide a deterministic approach to investigate input-output relationships in the human motor system. Neuromusculoskeletal models are typically used to estimate muscle activations and forces that are consistent with observed motion under healthy and pathological conditions. However, many movement pathologies originate in the brain, including stroke, cerebral palsy, and Parkinson’s disease, while most neuromusculoskeletal models deal exclusively with the peripheral nervous system and do not incorporate models of the motor cortex, cerebellum, or spinal cord. An integrated understanding of motor control is necessary to reveal underlying neural-input and motor-output relationships. To facilitate the development of integrated corticomuscular motor pathway models, we provide an overview of the neuromusculoskeletal modelling landscape with a focus on integrating computational models of the motor cortex, spinal cord circuitry, α-motoneurons  and skeletal muscle in regard to their role in generating voluntary muscle contraction. Further, we highlight the challenges and opportunities associated with an integrated corticomuscular pathway model, such as challenges in defining neuron connectivities, modelling standardisation, and opportunities in applying models to study emergent behaviour. Integrated corticomuscular pathway models have applications in brain-machine-interaction, education, and our understanding of neurological disease.
  • Thumbnail Image
    ItemOpen Access
    Determination of muscle shape deformations of the tibialis anterior during dynamic contractions using 3D ultrasound
    (2024) Sahrmann, Annika S.; Vosse, Lukas; Siebert, Tobias; Handsfield, Geoffrey G.; Röhrle, Oliver
    Purpose: In this paper, we introduce a novel method for determining 3D deformations of the human tibialis anterior (TA) muscle during dynamic movements using 3D ultrasound. Materials and Methods: An existing automated 3D ultrasound system is used for data acquisition, which consists of three moveable axes, along which the probe can move. While the subjects perform continuous plantar- and dorsiflexion movements in two different controlled velocities, the ultrasound probe sweeps cyclically from the ankle to the knee along the anterior shin. The ankle joint angle can be determined using reflective motion capture markers. Since we considered the movement direction of the foot, i.e., active or passive TA, four conditions occur: slow active, slow passive, fast active, fast passive. By employing an algorithm which defines ankle joint angle intervals, i.e., intervals of range of motion (ROM), 3D images of the volumes during movement can be reconstructed. Results: We found constant muscle volumes between different muscle lengths, i.e., ROM intervals. The results show an increase in mean cross-sectional area (CSA) for TA muscle shortening. Furthermore, a shift in maximum CSA towards the proximal side of the muscle could be observed for muscle shortening. We found significantly different maximum CSA values between the fast active and all other conditions, which might be caused by higher muscle activation due to the faster velocity. Conclusion: In summary, we present a method for determining muscle volume deformation during dynamic contraction using ultrasound, which will enable future empirical studies and 3D computational models of skeletal muscles.
  • Thumbnail Image
    ItemOpen Access
  • Thumbnail Image
    ItemOpen Access
    Effect of neglecting passive spinal structures : a quantitative investigation using the forward-dynamics and inverse-dynamics musculoskeletal approach
    (2023) Meszaros-Beller, Laura; Hammer, Maria; Schmitt, Syn; Pivonka, Peter
    Inverse-dynamics (ID) analysis is an approach widely used for studying spine biomechanics and the estimation of muscle forces. Despite the increasing structural complexity of spine models, ID analysis results substantially rely on accurate kinematic data that most of the current technologies are not capable to provide. For this reason, the model complexity is drastically reduced by assuming three degrees of freedom spherical joints and generic kinematic coupling constraints. Moreover, the majority of current ID spine models neglect the contribution of passive structures. The aim of this ID analysis study was to determine the impact of modelled passive structures (i.e., ligaments and intervertebral discs) on remaining joint forces and torques that muscles must balance in the functional spinal unit. For this purpose, an existing generic spine model developed for the use in the demoa software environment was transferred into the musculoskeletal modelling platform OpenSim. The thoracolumbar spine model previously used in forward-dynamics (FD) simulations provided a full kinematic description of a flexion-extension movement. By using the obtained in silico kinematics, ID analysis was performed. The individual contribution of passive elements to the generalised net joint forces and torques was evaluated in a step-wise approach increasing the model complexity by adding individual biological structures of the spine. The implementation of intervertebral discs and ligaments has significantly reduced compressive loading and anterior torque that is attributed to the acting net muscle forces by −200% and −75%, respectively. The ID model kinematics and kinetics were cross-validated against the FD simulation results. This study clearly shows the importance of incorporating passive spinal structures on the accurate computation of remaining joint loads. Furthermore, for the first time, a generic spine model was used and cross-validated in two different musculoskeletal modelling platforms, i.e., demoa and OpenSim, respectively. In future, a comparison of neuromuscular control strategies for spinal movement can be investigated using both approaches.
  • Thumbnail Image
    ItemOpen Access
    Patient‐specific simulation of brain tumour growth and regression
    (2023) Suditsch, Marlon; Ricken, Tim; Wagner, Arndt
    The medical relevance of brain tumours is characterised by its locally invasive and destructive growth. With a high mortality rate combined with a short remaining life expectancy, brain tumours are identified as highly malignant. A continuum‐mechanical model for the description of the governing processes of growth and regression is derived in the framework of the Theory of Porous Media (TPM). The model is based on medical multi‐modal magnetic resonance imaging (MRI) scans, which represent the gold standard in diagnosis. The multi‐phase model is described mathematically via strongly coupled partial differential equations. This set of governing equations is transformed into their weak formulation and is solved with the software package FEniCS. A proof‐of‐concept simulation based on one patient geometry and tumour pathology shows the relevant processes of tumour growth and the results are discussed.
  • Thumbnail Image
    ItemOpen Access
    Pressure management via brine extraction in geological CO2 storage : adaptive optimization strategies under poorly characterized reservoir conditions
    (2019) González-Nicolás, Ana; Cihan, Abdullah; Petrusak, Robin; Zhou, Quanlin; Trautz, Robert; Godec, Michael; Birkholzer, Jens T.
    Industrial-scale injection of CO2 into the subsurface increases the fluid pressure in the reservoir, which if not properly controlled can potentially lead to geomechanical damage (i.e., fracturing of the caprock or reactivation of faults) and subsequent CO2 leakage. Brine extraction is one approach for managing formation pressure, effective stress, and plume movement in response to CO2 injection. The management of the extracted brine can be expensive (i.e., due to transportation, treatment, disposal, or re-injection), with added cost to the carbon capture and sequestration (CCS); thus, minimizing the volume of extraction brine is of great importance to ensure that the economics of CCS are favorable. The main objective of this study is to demonstrate the use of adaptive optimization methods in the planning of brine extraction and to investigate how the quality of initial site characterization data and the use of newly acquired monitoring data (e.g. pressure at observation wells) impact the optimization performance. We apply an adaptive management approach that integrates monitoring, calibration, and optimization of brine extraction rates to achieve pre-defined pressure constraints. Our results show that reservoir pressure management can be extremely benefited by early and high frequency pressure monitoring during early injection times, especially for poor initial reservoir characterization. Low frequencies of model calibration and optimization with monitoring data may lead to optimization problems, because either pressure buildup constraints are violated or excessively high extraction rates are proposed. The adaptive pressure management approach may constitute an effective tool to manage pressure buildup under uncertain reservoir conditions by minimizing the volumes of extracted brine while controlling pressure buildup.
  • Thumbnail Image
    ItemOpen Access
    A microstructurally-based, multi-scale, continuum-mechanical model of skeletal muscle tissue
    (2019) Bleiler, Christian; Ponte Castañeda, Pedro; Röhrle, Oliver
  • Thumbnail Image
    ItemOpen Access
    Diagnosing similarities in probabilistic multi-model ensembles : an application to soil-plant-growth-modeling
    (2022) Schäfer Rodrigues Silva, Aline; Weber, Tobias K. D.; Gayler, Sebastian; Guthke, Anneli; Höge, Marvin; Nowak, Wolfgang; Streck, Thilo
    There has been an increasing interest in using multi-model ensembles over the past decade. While it has been shown that ensembles often outperform individual models, there is still a lack of methods that guide the choice of the ensemble members. Previous studies found that model similarity is crucial for this choice. Therefore, we introduce a method that quantifies similarities between models based on so-called energy statistics. This method can also be used to assess the goodness-of-fit to noisy or deterministic measurements. To guide the interpretation of the results, we combine different visualization techniques, which reveal different insights and thereby support the model development. We demonstrate the proposed workflow on a case study of soil–plant-growth modeling, comparing three models from the Expert-N library. Results show that model similarity and goodness-of-fit vary depending on the quantity of interest. This confirms previous studies that found that “there is no single best model” and hence, combining several models into an ensemble can yield more robust results.
  • Thumbnail Image
    ItemOpen Access
    Comparing methods for permeability computation of porous materials and their limitations
    (2023) Krach, David; Steeb, Holger
    Efficient numerical simulations of fluid flow on the pore scale allow for the numerical estimation of effective material properties of porous media, e.g. intrinsic permeability or tortuosity. These parameters are essential for various applications where hydro‐mechanical properties on larger scales have to be known. Numerical tools based intrinsically on pore scale simulations are known e.g. as Digital Rock Physics in geosciences and have even more and more replaced physical experiments. For these reasons, the validation of numerical methods as well as the establishment of clear limits regarding the application areas play an important role. Here, we compute single‐phase flow through a porous matrix, e.g. irregular sphere packings, sandstones, artificially created thin porous media, on the pore scale. Therefore we implement on the one hand a Smoothed Particle Hydrodynamics algorithm for solving the Navier‐Stokes equations and on the other hand a Finite Difference solver for the Stokes equations. Both methods work directly and seamlessly on voxel data of porous materials which are generated by µXRCT‐scans or by microfluidic experiments that have undergone segmentation and binarization. We compare both solvers from a parallel performance point of view as well as their results for flows in the Darcy regime. In addition, we investigate the limitations of the solvers using the example of a porous material whose pore geometry changes over time and precipitation affects the flow conditions.