02 Fakultät Bau- und Umweltingenieurwissenschaften
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/3
Browse
1 results
Search Results
Item Open Access Theorie und Numerik einer dreidimensionalen Schalenformulierung(1999) Bischoff, Manfred; Ramm, Ekkehard (Prof. Dr.-Ing.)Ausgangspunkt der Arbeit ist ein 7-Parameter-Schalenmodell mit Beruecksichtigung der Dickenänderung, das von Buechter und Ramm (1992) vorgestellt wurde. Die Anwendung eines solchen 3D-Schalenmodells ist insbesondere dann sinnvoll, wenn vollständig dreidimensionale Stoffgesetze verwendet werden sollen, womit auch Probleme mit grossen Verzerrungen berechnet werden können. Im Gegensatz zu Büchter und Ramm (1992) wird das Schalenmodell in dieser Arbeit unabhängig von der FE-Formulierung als Semidiskretisierung des Schalenkontinuums in Dickenrichtung auf der Basis eines Mehrfeldfunktionals hergeleitet. So kann das 7-Parameter-Modell als zweidimensionale, kontinuierliche Theorie mit sieben kinematischen Freiheitsgraden pro materiellem Punkt der Schalenmittelfläche verstanden werden. Es wird angestrebt eine physikalische Interpretation der kinematischen und statischen Variablen zu geben. Der Schwerpunkt liegt dabei auf den Grössen, die bei konventionellen 5-Parameter-Formulierungen nicht auftreten. Für den linearen Anteil der Querschubverzerrungen wird ein neuer Schubkorrekturfaktor vorgeschlagen, der den Fehler bezüglich der vollständig dreidimensionalen Lösung vermindern kann. Es wird ausserdem gezeigt, dass die Anzahl der kinematischen und statischen Variablen in diesem 7-Parameter-Modell im Hinblick auf die Verwendung dreidimensionaler Stoffgesetze optimal' ist. Schliesslich wird ein einheitliches Konzept zur Formulierung drei- und viereckiger Schalenelemente mit Ansätzen beliebigen Polynomgrades vorgestellt. Dabei werden aus der Literatur bekannte Methoden mit eigenen Entwicklungen kombiniert. Ausserdem wird eine Verbesserung bei der Behandlung von Schalen mit Knicken vorgeschlagen. Das Konzept wird für lineare und quadratische Drei- und Viereckelemente verwirklicht. In numerischen Berechnungen linearer sowie materiell und geometrisch nichtlinearer Probleme werden die Eigenschaften der vorgestellten Elemente untersucht.