02 Fakultät Bau- und Umweltingenieurwissenschaften
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/3
Browse
10 results
Search Results
Item Open Access Der Abbau von Fluorbenzol und seinen Homologen durch Burkholderia fungorum FLU 100(2007) Strunk, Niko; Engesser, Karl-Heinrich (Prof. Dr.)Der Stamm Burkholderia fungorum FLU 100 besitzt die unter den Bakterien äußerst selten zu findende Eigenschaft, Fluorbenzol als alleinige Kohlenstoff- und Energiequelle nutzen zu können. Außerdem kann der Stamm auch die anderen Monohalogenbenzole sowie Benzol und Toluol - als Reinstoff oder in beliebigen Mischungen - vollständig produktiv verwerten. In dieser Arbeit wurden ein Teil des Abbauweges sowie die Einsatzmöglichkeiten des Stammes im Rahmen der biologischen Abluftreinigung erforscht. Der Stamm FLU 100 kann mit Halogenatomen oder Alkylgruppen di- und höher substituierte Benzole nicht abbauen. 3-Fluorphenol ist hingegen abbaubar, jedoch wird hierzu, abweichend vom Fluorbenzolabbauweg, mindestens ein weiteres Enzym, eine Phenoloxygenase exprimiert. Zur Aufklärung der Aromatenabbauwege wurde Burkholderia fungorum FLU 100 mittels einer Tn5 Variante (pCro2) mutiert. Die Untersuchung der gewonnenen Transposonmutanten lieferte zahlreiche Metabolite des oberen Abbauweges. Das initiale Dioxygenasesystem greift die angebotenen benzoiden Substrate stets in Orthoposition zum Substituenten an. Dadurch wird die Aromatizität aufgehoben, es werden in 3 Position substituierte Cyclohexa 3,5 dien 1,2 diole (Diendiole) gebildet, welche beim Abbau von Monohalogenaromaten das Halogenatom in 3 Position tragen. Diese Metabolite werden zu den entsprechenden, an der 3 Position substituierten Catecholen zyklisiert, welche wiederum zu 2 substituierten Muconaten oxidativ gespalten werden. Aus den Muconaten entstehen in einem weiterem Schritt Muconolactone. Die Catechol-1,2-dioxygenase weist dabei klassische Typ – II Kinetik auf. Der Stamm FLU 100 verfügt über eine bemerkenswert hohe Fluorid – Toleranz. Er stellt das Wachstum erst ab 200 mmol/L im Medium ein. Zwei Biotricklingfilter im Technikumsmaßstab wurden konstruiert und über anderthalb Jahre hinweg betrieben. Als Packungsmaterial kam Blähton zum Einsatz. Es zeigte sich, dass fluorbenzolbelastete Abluft mit einer geringen Eliminationskapazität von ca. 5 g/m3h abgereinigt werden konnte, der Wirkungsgrad lag dabei um die 50 %. Eine äquimolare Mischung aus Fluorbenzol und Chlorbenzol konnte mit einer Eliminationskapazität zwischen 6 und 10 g/m3h behandelt werden. Dabei lag der Wirkungsgrad bezüglich des Fluorbenzols bei ca. 50 %, der des Chlorbenzols bei ca. 90 %. In den Reaktorsümpfen sammelten sich Fluorwasserstoff und Chlorwasserstoff als saure Metabolite an. Diese konnten mit Natriumhydrogencarbonat neutralisiert werden. Weiße, kristalline Ablagerungen traten mit der Zeit in den Reaktorsümpfen auf. Diese enthielten entgegen den Erwartungen nur sehr wenig Calciumfluorid (Fluoranteil 5 %), sondern vor allem Calcium, Sauerstoff, Phosphor und Silizium.Item Open Access Microbial stabilization of lotic fine sediments(Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart, 2018) Schmidt, Holger; Wieprecht, Silke (Prof. Dr.-Ing.)The microbial stabilization of fine sediments constitutes an essential ecosystem function with great ecological and economic implications e.g. in the context of reservoir and waterway management. Although this process is well researched in intertidal mudflats, there is still a major lack of knowledge for lotic systems. To perform fundamental research in this field and to account for the associated very high level of complexity, expertise of natural and engineering science was combined in an interdisciplinary approach. A highly sophisticated mesocosm setup was designed and constructed to guarantee fully controllable and reproducible natural-like boundary conditions during biofilm formation. The overall aim of the performed studies in this doctoral thesis was a comprehensive investigation of all relevant parameters of the cultivated biofilms, such as the microbial biomass, the produced extracellular polymeric substances (EPS), and the composition of the microbial community as well as the stability of the biofilm. This extensive approach should allow the identification of functional key parameters of the biofilm as well as essential interactions and their impact on the overall biofilm ecosystem and resulting biostabilization. In a series of long-term experiments, different influencing factors on biofilm development and corresponding biostabilization were assessed. The first potential impact factor that was analyzed was the experimental setup itself. Furthermore, the influence of the seasonal changes of the microbial community in the utilized river water and the effects of different levels of bed shear stress and illumination intensity were assessed. The results of these different experiments provided essential new insights into the process of biostabilization of lotic fine sediments. Firstly, the reliability of the used experimental setup could be proven, as no significant differences could be detected in biofilm formation and biostabilization comparing different mesocosm sections. The fact that very similar biofilms were developing when the boundary conditions were identical was a crucial prerequisite for any further investigations. In addition, the relevance of biostabilization in lotic systems, which was doubted for a long time, could be proven. However, freshwater and brackish habitat can be very different (e.g. in terms of nutrient availability). This was exemplarily indicated by significantly lower microbial biomass in the analyzed freshwater biofilms compared to biofilms from well-studied intertidal mudflats. Moreover, the very complex interplays between bacteria and diatoms in the biofilm matrix were underlined which led to a focus on this subject during further subsequent studies via an extensive genetic and microscopic profiling. Secondly, the important role of EPS during biostabilization could be demonstrated, whereby the significance of extracellular proteins, such as adhesives produced by sessile diatoms, was suggested. This observation may extend the current EPS research which focusses on extracellular carbohydrates due to their high quantitative fraction in the EPS matrix. Furthermore, the interactions between the microbes, the extracellular matrix and the overall stability of the biofilm system appeared to be much more complex than formerly assumed. Thirdly, the importance of the microbial community in the biofilm system could be elucidated. Even though a high correlation between mere microbial biomass and biostabilization could be detected, especially the seasonality experiments emphasized the impact of the life style of key players among the diatoms. These insights could be extended during the experiments analyzing the different levels of abiotic boundary conditions, where differently stable biofilms were clearly dominated by different assemblages of dominant bacteria. These observations constitute very important new insights into microbial biostabilization as a direct correlation between microbial ecology and the overall, actually measurable ecosystem function of the biofilm could be shown for the first time. Concluding, the insights into the fundamental principles of biostabilization gathered during this thesis can be seen as important steps for further fundamental research. The construction of a reliable unique setup is complete, the reproducible biofilm cultivation in this setup is verified and first investigations of different driving factors during biostabilization were performed. These analyses paved the way for further studies to analyze currently hardly assessed boundary conditions and deeper assessments in order to generate a sound database for future modelling approaches of the dynamics of microbially stabilized lotic fine sediments.Item Open Access Data-driven modelling of neuromechanical adaptation in skeletal muscles in response to isometric exercise(Stuttgart : Institute for Modelling and Simulation of Biomechanical Systems, Chair of Continuum Biomechanics and Mechanobiology, University of Stuttgart, 2022) Altan, Neriman Ekin; Röhrle, Oliver (Prof., PhD)This study aims to model the changes in the behaviour of motor neurons of the vastus lateralis in response to unilateral isometric knee extension exercise (UIKEE). For this, the phenomenological motor control model by Fuglevand et al. (1993) has been used. Input parameters for this model have been calibrated against data from experimental studies available in literature by using Bayesian updating. The pre-exercise state of the motor neuron pool of the muscle describing the recruitment behaviour as well as the contractile properties of the motor neurons have been constructed. Data collected from a systematic review on the change in isometric strength due to UIKEE has been modelled using Bayesian lonigutidinal model-based meta-analysis. Using the model of the change in isometric strength, increase in the average motor neuron discharge rate following UIKEE has been quantified.Item Open Access Mixed-dimension models for flow and transport processes in porous media with embedded tubular network systems(Stuttgart: Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart, 2020) Koch, Timo; Flemisch, Bernd (apl. Prof. Dr. rer. nat.)Flow in vascularized biological tissue, root water uptake, or flow around injection or extraction wells can be modeled by coupled mixed-dimensional PDE systems. Conceptually, such systems can be described as porous media with embedded tubular transport networks. We describe numerical methods for the simulation of such systems. The compartments are spatially discretized by non-matching computational grids: a three-dimensional mesh for the porous medium domain, and a geometrically embedded mesh of connected line segments for the network domain. A generalized abstract form of mixed-dimension embedded models is presented which summarizes several existing methods. A particularity of solutions to mixed-dimensional PDEs with dimensional gap two (0D-2D or 1D-3D) is the occurrence of singularities where the network center-lines intersect the porous domain. We introduce a new numerical scheme which removes these singularities by smoothing kernels, and exhibits improved convergence behavior and accuracy for coarse grid resolutions. The method is developed for isotropic, as well as anisotropic porous media. Furthermore, a new mixed-dimension embedded model for tissue perfusion and NMR signal generation is presented. Detailed perfusion simulations on the capillary scale are shown to reproduce image contrast of clinical (organ-scale) MRI data from multiple sclerosis patients. Similar modeling techniques and methods are then used to simulate root water uptake. For the implementation of such applications, a common software framework is developed by use of the open-source simulator DuMux. The framework allows the implementation of coupled mixed- and equidimensional models in a unified way, using software abstractions. Possible framework applications go beyond the methods presented in this work.Item Open Access Mikrobiologischer Abbau verzweigter kurzkettiger Aliphaten am Beispiel Methylpropen(2023) Helbich, Steffen; Engesser, Karl-Heinrich (Prof. Dr. rer. nat. habil.)Die Stämme IBE100 und IBE200 wurden aus Belebtschlamm einer Kläranlage mit Methylpropen (MP) als alleinige Kohlenstoff- und Energiequelle isoliert. Mittels Vergleich der 16S rRNA sowie hsp65 Gensequenzabschnitte und Genom-basierter Taxonomie wurden die Stämme IBE100 und IBE200 den Spezies Mycolicibacterium gadium und Mycobacterium gordonae zugeordnet. Diese obligat aeroben Bakterien sind Oxidase- und Katalase-positiv, säurefest, nicht motil und bilden gelb-pigmentierte, kreisförmige, flache Kolonien aus. Aufgrund der wachsartigen Beschaffenheit der Zellen wurden Flüssigkulturen mit dem Detergenz Triton X-100 versetzt, um ein starkes Verklumpen zu vermeiden. Neben dem Isolationssubstrat Methylpropen (IBE100: µ = 0,018 h-1 und IBE200: µ = 0,025 h-1) unterscheiden sich die Stämme in der Nutzung der Substrate, die als alleinige Kohlenstoff- und Energiequellen verwendet werden können. Stamm IBE100 ist in der Lage, auf den vermuteten Metaboliten von MP, 1,2-Epoxy-2-methylpropan, 2-Methylpropan-1,2-diol, 2 Hydroxyisobuttersäure, 3-Hydroxybuttersäure sowie Glucose, Fructose und Vollmedien (LB, NB, TB) zu wachsen, Stamm IBE200 hingegen nicht. Strukturanaloga von MP und seinen Metaboliten (verzweigte kurzkettige Alkene, Epoxide, vicinale Diole), zyklische aliphatische Verbindungen und Aromaten induzierten bei beiden Stämmen kein Wachstum. Die cometabolische subterminale Oxidation von n-Butan durch dieselbe Monooxygenase, die MP oxidiert, wurde ebenso nachgewiesen wie ihre Induzierbarkeit durch MP und die Indigobildung aus Indol. Eine am Abbauweg von MP beteiligte Alkohol-Dehydrogenase, welche die Oxidation von 2 Methylpropan-1,2-diol katalysiert, ist nicht homolog zu beschriebenen Enzymen gleicher Funktion, die in Abbauwegen von tert-Butanol und 2-Methylpropan-1,2-diol vorkommen. Es konnte gezeigt werden, dass die Dehydrogenase im Zellextrakt NADP gegenüber NAD bevorzugt. Aus der Sequenzierung des Gesamtgenoms, einer differenziellen Expressionsanalyse und einem Peptidmassen Fingerprint wurde ein Abbauweg für Methylpropen abgeleitet. Die identifizierten Schlüsselgene codieren für eine lösliche 4-Komponenten-di-Eisen-Monooxygenase mit Epoxidase-Aktivität, eine Epoxid-Hydrolase und eine 2 Hydroxyisobutyryl-CoA-Mutase. Die Tertiärstrukturen dieser Enzyme wurden modelliert. In beiden Stämmen sind die beteiligten Gene in Clustern von 61,0 bzw. 58,5 kbp in einer erstaunlich hoch konservierten Operonstruktur angeordnet. Diese Cluster enthalten auch die Gene, die für Teile des aeroben Synthesewegs von Adenosylcobalamin codieren, einem Vitamin, das für die von der Mutase katalysierte Kohlenstoffumlagerungsreaktion erforderlich ist. Eine Konvergenz mit dem tert-Butanol-Abbauweg wurde ersichtlich, jedoch konnte der Alkohol selbst aufgrund des Fehlens der erforderlichen spezifischen Oxygenase nicht als Kohlenstoffquelle genutzt werden. Dies ist der erste Nachweis eines Abbauweges für MP auf genetischer Ebene (Helbich et al. 2023), der bisher rein auf Transformationsanalysen mit vermuteten Metaboliten beruht, die aus MTBE-Abbauexperimenten postuliert wurden. Die für die Epoxidierung von MP verantwortliche Monooxygenase wurde als Mitglied der Gruppe 2 der löslichen Monooxygenasen des Aromaten-/Alken-/Isopren-Typs identifiziert, die aus einer Oxygenase-α-Untereinheit IbeA, einer γ-Untereinheit IbeB, einem Ferredoxin vom Rieske-Typ IbeC, einem Kopplungsprotein IbeD, einer β-Untereinheit IbeE und einer flavinhaltigen NAD(P)H-Reduktase IbeF besteht. Die Tertiärstruktur der α-Untereinheit IbeA wurde modelliert und mit ihrer nächsten Verwandten, der Isopren-Monooxygenase aus Rhodococcus sp. AD45, verglichen. Die Geometrien des vorhergesagten aktiven Zentrums und der Substrattunnel lassen auf eine gewisse sterische Einschränkung bei der Substratverwertung schließen. Die Monooxygenase wurde in dem n-Alkan abbauenden Mycobacterium fluoranthenivorans BUT6 mit pST-K, einem E. coli-Mycobacterium-Shuttle- und Expressionsvektor, heterolog exprimiert. Für die Ausbildung einer katalytischen Aktivität war eine Inkubationstemperatur von ~20 °C erforderlich. Die Monooxygenase war trotz der gescheiterten Expression der Reduktase-Komponente IsoF aktiv. Die Umwandlung von MP in 1,2-Epoxy-2-methylpropan in ruhenden Zellen wurde kolorimetrisch mit dem NBP-Assay nachgewiesen (KM = 271 mM, vmax = 46 mM ⋅ h-1).Item Open Access The benefit of muscle-actuated systems : internal mechanics, optimization and learning(Stuttgart : Institut für Modellierung und Simulation Biomechanischer Systeme, Computational Biophysics and Biorobotics, 2023) Wochner, Isabell; Schmitt, Syn (Prof. Dr.)We are facing the challenge of an over-aging and overweight society. This leads to an increasing number of movement disorders and causes the loss of mobility and independence. To address this pressing issue, we need to develop new rehabilitation techniques and design innovative assistive devices. Achieving this goal requires a deeper understanding of the underlying mechanics that control muscle-actuated motion. However, despite extensive studies, the neural control of muscle-actuated motion remains poorly understood. While experiments are valuable and necessary tools to further our understanding, they are often limited by ethical and practical constraints. Therefore, simulating muscle-actuated motion has become increasingly important for testing hypotheses and bridge this knowledge gap. In silico, we can establish cause-effect relationships that are experimentally difficult or even impossible to measure. By changing morphological aspects of the underlying musculoskeletal structure or the neural control strategy itself, simulations are crucial in the quest for a deeper understanding of muscle-actuated motion. The insights gained from these simulations paves the way to develop new rehabilitation techniques, enhance pre-surgical planning, design better assistive devices and improve the performance of current robots. The primary objective of this dissertation is to study the intricate interplay between musculoskeletal dynamics, neural controller and the environment. To achieve this goal, a simulation framework has been developed as part of this thesis, enabling the modeling and control of muscle-actuated motion using both model-based and learning-based methods. By utilizing this framework, musculoskeletal models of the arm, head-neck complex and a simplified whole-body model are investigated in conjunction with various concepts of motor control. The main research questions of this thesis are therefore: 1. How does the neural control strategy select muscle activation patterns to generate the desired movement, and can we use this knowledge to design better assistive devices? 2. How does the musculoskeletal dynamics facilitate the neural control strategy in accomplishing this task of generating desired movements? To address these research questions, this thesis comprises a total of five journal and conference articles. More specifically, contributions I-III of this thesis focus on addressing the first research question which aims to understand how voluntary and reflexive movements can be predicted. First, we investigate various optimality principles using a musculoskeletal arm model to predict point-to-manifold reaching tasks. By using predictive simulations, we demonstrate how the arm would move towards a goal if, for example, our neural control strategy would minimize energy consumption. The main finding of this contribution shows that it is essential to include muscle dynamics and consider tasks with more openly defined targets to draw accurate conclusions about motor control. Through our analysis, we show that a combination of mechanical work, jerk and neuronal stimulation effort best predicts point-reaching when compared to human experiments. Second, we propose a novel method to optimize the design of exoskeleton power units taking into account the load cycle of predicted human movements. To achieve this goal, we employ a forward dynamic simulation of a generic musculoskeletal arm model, which is first scaled to represent different individuals. Next, we predict individual human motions and employ the predicted human torques to scale the electrical power units employing a novel scalability model. By considering the individual user needs and task demands, our approach achieves a lighter and more efficient design. In conclusion, our framework demonstrates the potential to improve the design of individual assistive devices. The third contribution focuses on predicting reflexive movements in response to sudden perturbations of the head-neck complex. To achieve this, we conducted experiments in which volunteers were placed on a table while supporting their heads with a trapdoor. This trapdoor was then suddenly released leading to a downward movement of the head until the reflexive reaction of the muscles stops the head from falling. We analyzed the results of these experiments, presenting characteristic parameters and highlighting differences between separate age and gender groups. Using this data, we also set up benchmark validations for a musculoskeletal head-neck model, including reflex control strategies. Our main findings are that there are large individual differences in reflexive responses between participants and that the perturbation direction significantly affects the reflexive response. Furthermore, we show that this data can be used as a benchmark test to validate musculoskeletal models and different muscle control strategies. While the first three contributions focus on the research question (1), contributions IV-V focus on (2) whether and how the musculoskeletal dynamics facilitate the learning and control task of various movements. We utilize a recently introduced information-theoretic approach called control effort to quantify the minimally required information to perform specific movements. By applying this concept, we can for example quantify how much biological muscles reduce the neuronal information load compared to technical DC-motors. We present a novel optimization algorithm to find this control effort and apply it to point-reaching and walking tasks. The main finding of this contribution is that the musculoskeletal dynamics reduce the control effort required for these movements compared to torque-driven systems. Finally, we hypothesize that the highly nonlinear muscle dynamics not only facilitate the control task but also provide inherent stability that is beneficial for learning from scratch. To test this, we employed various learning strategies for multiple anthropomorphic tasks, including point-reaching, ball-hitting, hopping, and squatting. The results of this investigation demonstrate that using muscle-like actuators improves the data-efficiency of the learning tasks. Additionally, including the muscle dynamics improves the robustness towards hyperparameters and allows for a better generalization towards unknown and unlearned perturbations. In summary, this thesis enhances existing methods to control and learn muscle-actuated motion, quantifies the control effort needed to perform certain movements and demonstrates that the inherent stability of the muscle dynamics facilitates the learning task. The models, control strategies, and experimental data presented in this work aid researchers in science and industry to improve their predictions in various fields such as neuroscience, ergonomics, rehabilitation, passive safety systems, and robotics. This allows us to reverse-engineer how we as humans control movement, uncovering the complex relationship between musculoskeletal dynamics and neural controller.Item Open Access On the load limits of the muscle-tendon unit and their applications in musculoskeletal human body models(Stuttgart : Institut für Modellierung und Simulation Biomechanischer Systeme, Computational Biophysics and Biorobotics, 2024) Nölle, Lennart V.; Schmitt, Syn (Prof. Dr.)The human skeletal muscle fulfils many movement-related functions, simultaneously acting as the main motor, spring, strut and brake of the body. Equally important for human motion generation are the tendons, which provide passive joint stabilisation and transfer the muscle’s contraction forces to the skeletal structure. Together, muscle and tendon form the muscle-tendon unit (MTU). Despite its ability to withstand many different loading scenarios, the MTU is susceptible to numerous kinds of injury, the most prevalent being the muscle strain injury. The retrospective evaluation of observed injury scenarios and the prediction of injury outcomes and risks has been increasingly important in sports biomechanics, automotive safety and forensic traumatology. For this purpose, numerous injury criteria have been defined for the use with both physical and virtual representations of the human body. While significant efforts in the field of injury severity classification have been made, strain injuries of the MTU have not yet been taken into consideration. This might be because conventional methods of defining injury criteria are not applicable to MTU strain injuries as the properties of the MTU and the nature of MTU strain injuries pose numerous unresolved challenges so far. The primary objective of this dissertation is to overcome these challenges and to define and substantiate MTU strain injury criteria for the use in musculoskeletal human body model simulations. The overarching research question which the presented thesis aims to answer is how injury criteria for strain injuries of the MTU can be defined and which information can be derived from their application. Throughout, the following sub-questions are addressed: 1. How can a strain injury criterion for the muscle be defined and substantiated based on literature data? 2. How can a strain injury criterion for the tendon be defined and applied to the recreation of an injury load case? 3. Which other applications besides injury severity assessment exist for the proposed injury criteria? These questions were tackled consecutively in three journal publications which comprise this dissertation. Sub-question 1 was answered in Contribution 1, where a muscle strain injury criterion (MSIC) was defined based on experimental data from the literature. The resulting injury criterion can differentiate between three levels of injury severity and is easily applicable to the computational representation of any muscle. The injury thresholds were substantiated by comparison to the calculated maximum ultimate tensile strength of mammalian skeletal muscle and through the application of the MSIC in a sprinting gait cycle simulation. The MSIC was also used for a simulation study on the aetiology of muscle strain injuries in which it was shown that material inhomogeneities might cause localised strain injuries within a muscle. To tackle sub-question 2, Contribution 2 built on the findings of Contribution 1 by formulating the tendon strain injury criterion TSIC. This criterion was used to investigate the forces and strains acting on finger flexor tendons during jersey finger injury scenarios. For this purpose, a finite element neuromusculoskeletal hand model was created through the combination of two preexisting models. Additionally, new Hill-type muscle elements were inserted whose parameters were calibrated to fit experimental data. The newly created hand model was used to recreate a simplified jersey finger injury load case under varying muscle activity levels. This simulations study showed that a correlation between muscle activity and sustained injury severity exists. Finally, Contribution 3 set out to answer sub-question 3 and to demonstrate the usefulness of the MSIC and TSIC for applications other than injury severity assessment. For this, common modelling issues present in musculoskeletal human body models were first recreated and then detected using the proposed criteria. First, the deformation of a finite element model’s skeletal structure during model repositioning was identified through an MSIC assessment of muscles spanning a displaced joint. Second, an ill-tuned muscle parameter within an otherwise physiological model was found through applying the TSIC to a multibody gait cycle simulation. Additionally, a new method for determining minor TSIC thresholds for arbitrarily parameterised tendons was developed, thus improving the usability of the TSIC. The cumulative result of this thesis is a strain injury criterion for the MTU which, to the author’s knowledge, is the first of its kind. Additionally, a new method for evaluating the quality of musculoskeletal human body models was provided. Future studies should focus on the experimental validation of the proposed injury criteria and on expanding them by statistical metrics. Potential application scenarios of the MSIC and TSIC, besides injury evaluation, are as model assessment tools or in ergonomics.Item Open Access Über die Regelung muskelgetriebener Systeme : ein hierarchischer und geometriebasierter Ansatz(Stuttgart : Institut für Modellierung und Simulation Biomechanischer Systeme, Computational Biophysics and Biorobotics, 2022) Walter, Johannes R.; Schmitt, Syn (Prof. Dr. rer. nat.)Computersimulationen sind heutzutage eine leistungsfähige wissenschaftliche Methode um Hypothesen unter simulierten Bedingungen zu überprüfen. Dennoch scheinen biologische Bewegungen von mehrgelenkigen Systemen mit einer Vielzahl von Muskeln das Ergebnis von neuronalen Kommandos zu sein, die zu komplex sind um algorithmisch implementiert zu werden. Daher ist die Vielfalt, sowie die Komplexität von in-silico synthetisierten, muskelgetriebenen Bewegungen noch immer gering. Ein Schlüsselproblem zur Regelung biologischer Bewegung ist es eine Verbindung zwischen einer konzeptionellen Idee der Bewegung und der Bereitstellung von Muskelstimulationen herzustellen. Dies kann sich als schwierig erweisen, da in biologischen Bewegungen die Anzahl der Muskeln größer ist als die Dimension des konzeptionellen Raums der Bewegungsidee, bspw. der mechanischen Freiheitsgraden (FHG) des Skelettsystems. In dieser Dissertation wird eine mathematische Formulierung einer hierarchischen Regelungsarchitektur vorgestellt, die eine solche Verbindung herstellt und die dazu ausgelegt ist eine Vielzahl von dreidimensionalen, muskelgetriebenen Bewegungen zu synthetisieren. Die Funktionsfähigkeit der Regelungsarchitektur ist anhand von verschiedenen menschlichen Bewegungsaufgaben demonstriert. Dies beinhaltet Simulationen von einem aufrechtem Stand, von einer Einstiegsbewegung in ein Fahrzeug, um ergonomische Rückschlüsse von einer virtuellen Designänderung zu ziehen, und von einem Sturz in eine Badewanne, um die Aufklärung eines Kriminalfalles zu unterstützen. Das zur Bewegungssynthese verwendete dreidimensionale digitale Menschmodell (DMM) besteht aus 20 Gelenk FHG und 36 Hill-Typ Muskel-Sehnen Einheiten (MSE). Das DMM ist erdähnlicher Gravitation ausgesetzt und die Füße interagieren mit dem Boden durch reversible Haft- und Gleitreibungskontakte. Die Regelungsarchitektur liefert kontinuierliche Stimulationen für alle MSE, basierend auf einer konzeptionellen Formulierung der Bewegungsaufgabe in den Koordinaten der Gelenkwinkel, der Gelenkmomente, der Positionen der Gliedmaßen oder in anderen konzeptionellen Koordinaten. Die Hierarchie der Regelungsarchitektur besteht aus drei Ebenen, der 'Konzeptionsebene', der 'Transformationsebene' und der 'Strukturebene'. In der 'Konzeptionsebene' wird die Bewegungsaufgabe in den konzeptionellen Koordinaten der Winkel, der Momente oder der Positionen formuliert und geregelt. Die Ausgangsgröße des konzeptionellen Reglers wird in einen Bewegungsplan für die Gelenkwinkel transformiert und bildet die Eingangsgröße für zwei Gelenkwinkelregler in der 'Transformationsebene'. Die 'Transformationsebene' kommuniziert mit den biologischen Strukturen in der 'Strukturebene', indem sie zum einen direkte Stimulationen für die MSE bereitstellt und zum anderen weitere Eingangssignale für strukturelle MSE Regler liefert. Dabei wird die Redundanz zwischen den MSE Stimulationen und den Gelenkwinkeln aufgelöst. Hierzu werden die Charakteristiken der modellierten biophysikalischen Strukturen, die Hebelarme der Muskeln, die Steifigkeitsverhältnisse innerhalb des Muskelmodells und die Längen-Stimulationsabhängigkeit der Aktivierungsdynamik, zu Nutze gemacht. Die von den MSE über ihre Hebelarme generierten Gelenkmomente beschleunigen die Körpersegmente und, indem die konzeptionellen Koordinaten an die Regler in der 'Konzeptionsebene' zurückgeführt werden, wird der hierarchische Regelkreis geschlossen. Die präsentierte Regelungsarchitektur erlaubt es damit eine konzeptionelle Bewegungsaufgabe direkt in Stimulationssignale der MSE zu übersetzen. Mit diesem Ansatz wird das Problem der Bewegungsplanung erleichtert, da bspw. nur das mechanische System in der konzeptionellen Planung betrachtet werden muss. Da zudem die Auflösung der Muskel-Gelenk-Redundanz nicht eindeutig ist, verbleibt zur Regelung eine 'ungeregelte Mannigfaltigkeit', mit der die Kokontraktion aller Muskeln an dem selben Gelenk genau so angepasst werden kann, dass sie nicht mit der Erfüllung der Bewegungsaufgabe in Konflikt steht. Die Ergebnisse dieser Dissertation sind vielversprechend bezüglich der Anwendung der Regelungsarchitektur für die Synthese von dynamischen und komplexen muskelgetriebenen Bewegungen, auch für robotische Systeme die mit künstlichen Muskeln ausgestattet sind. Die internen Zustände des muskuloskelettalen Models sind zu weiterführenden Analysen geeignet, wie z.B. zur Evaluation der Ergonomie oder zur Abschätzung gesundheitlicher Auswirkungen der Bewegung.Item Open Access Der biologische Abbau von hydroxylierten Alkylethern(2018) Woiski, Christine; Engesser, Karl-Heinrich (Prof. Dr. rer. nat. habil.)Item Open Access Modelling biogeochemical and mass transport processes in the subsurface: investigation of microbially induced calcite precipitation(Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart, 2016) Hommel, Johannes; Class, Holger (apl. Prof. Dr.-Ing.)