02 Fakultät Bau- und Umweltingenieurwissenschaften

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/3

Browse

Search Results

Now showing 1 - 8 of 8
  • Thumbnail Image
    ItemOpen Access
    Clustering simultaneous occurrences of the extreme floods in the Neckar catchment
    (2021) Modiri, Ehsan; Bárdossy, András
    Flood protection is crucial for making socioeconomic policies due to the high losses of extreme floods. So far, the synchronous occurrences of flood events have not been deeply investigated. In this paper, multivariate analysis was implemented to reveal the interconnection between these floods in spatiotemporal resolution. The discharge measurements of 46 gauges with a continuous daily time series for 55 years were taken over the Neckar catchment. Initially, the simultaneous floods were identified. The Kendall correlation between the pair sets of peaks was determined to scrutinize the similarities between the simultaneous events. Agglomerative hierarchical clustering tree (AHCT) and multidimensional scaling (MDS) were employed, and obtained clusters were compared and evaluated with the Silhouette verification method. AHCT shows that the Average and Ward algorithms are appropriate to detect reasonable clusters. The Neckar catchment has been divided into three major clusters: the first cluster mainly covers the western part and is bounded by the Black Forest and Swabian Alps. The second cluster is mostly located in the eastern part of the upper Neckar. The third cluster contains the remaining lowland areas of the Neckar basin. The results illustrate that the clusters act relatively as a function of topography, geology, and anthropogenic alterations of the catchment.
  • Thumbnail Image
    ItemOpen Access
    Hydrological modelling in data sparse environment : inverse modelling of a historical flood event
    (2020) Bárdossy, András; Anwar, Faizan; Seidel, Jochen
    We dealt with a rather frequent and difficult situation while modelling extreme floods, namely, model output uncertainty in data sparse regions. A historical extreme flood event was chosen to illustrate the challenges involved. Our aim was to understand what the causes might have been and specifically to show how input and model parameter uncertainties affect the output. For this purpose, a conceptual model was calibrated and validated with recent data rich time period. Resulting model parameters were used to model the historical event which subsequently resulted in a rather poor hydrograph. Due to the bad model performance, a spatial simulation technique was used to invert the model for precipitation. Constraints, such as taking the precipitation values at historical observation locations in to account, with correct spatial structures and following the observed regional distributions were used to generate realistic precipitation fields. Results showed that the inverted precipitation improved the performance significantly even when using many different model parameters. We conclude that while modelling in data sparse conditions both model input and parameter uncertainties have to be dealt with simultaneously to obtain meaningful results.
  • Thumbnail Image
    ItemOpen Access
    Grundlagenbericht Niederschlags-Simulator (NiedSim3)
    (Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart, 2017) Müller, Thomas; Mosthaf, Tobias; Gunzenhauser, Sarah; Seidel, Jochen; Bárdossy, András
    Das Programmsystem NiedSim3 (Niederschlags-Simulation) ist ein stochastischer Generator, mit dem für einen beliebigen, frei wählbaren Punkt in einer Modellregion Niederschlagszeitreihen erzeugt werden können, deren statistische Eigenschaften denen des natürlichen Niederschlags an diesem Ort entsprechen.
  • Thumbnail Image
    ItemOpen Access
    Grundlagenbericht Niederschlags-Simulator (NiedSim3)
    (Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart, 2017) Müller, Thomas; Mosthaf, Tobias; Gunzenhauser, Sarah; Seidel, Jochen; Bárdossy, András
  • Thumbnail Image
    ItemOpen Access
    Simultaneous calibration of hydrological models in geographical space
    (2016) Bárdossy, András; Huang, Yingchun; Wagener, Thorsten
    Hydrological models are usually calibrated for selected catchments individually using specific performance criteria. This procedure assumes that the catchments show individual behavior. As a consequence, the transfer of model parameters to other ungauged catchments is problematic. In this paper, the possibility of transferring part of the model parameters was investigated. Three different conceptual hydrological models were considered. The models were restructured by introducing a new parameter η which exclusively controls water balances. This parameter was considered as individual to each catchment. All other parameters, which mainly control the dynamics of the discharge (dynamical parameters), were considered for spatial transfer. Three hydrological models combined with three different performance measures were used in three different numerical experiments to investigate this transferability. The first numerical experiment, involving individual calibration of the models for 15 selected MOPEX catchments, showed that it is difficult to identify which catchments share common dynamical parameters. In the second numerical experiment, a common spatial calibration strategy was used. It was explicitly assumed that the catchments share common dynamical parameters. In the third numerical experiment, the common calibration methodology was applied for 96 catchments. Another set of 96 catchments was used to test the transfer of common dynamical parameters. The results show that even a large number of catchments share similar dynamical parameters. The performance is worse than those obtained by individual calibration, but the transfer to ungauged catchments remains possible. The performance of the common parameters in the second experiment was better than in the third, indicating that the selection of the catchments for common calibration is important.
  • Thumbnail Image
    ItemOpen Access
    The use of personal weather station observations to improve precipitation estimation and interpolation
    (2021) Bárdossy, András; Seidel, Jochen; El Hachem, Abbas
    In this study, the applicability of data from private weather stations (PWS) for precipitation interpolation was investigated. Due to unknown errors and biases in these observations, a two-step filter was developed that uses indicator correlations and event-based spatial precipitation patterns. The procedure was tested and cross validated for the state of Baden-Württemberg (Germany). The biggest improvement is achieved for the shortest time aggregations.
  • Thumbnail Image
    ItemOpen Access
    Why do our rainfall-runoff models keep underestimating the peak flows?
    (2023) Bárdossy, András; Anwar, Faizan
    In this paper, the question of how the interpolation of precipitation in space by using various spatial gauge densities affects the rainfall-runoff model discharge if all other input variables are kept constant is investigated. The main focus was on the peak flows. This was done by using a physically based model as the reference with a reconstructed spatially variable precipitation model and a conceptual model calibrated to match the reference model's output as closely as possible. Both models were run with distributed and lumped inputs. Results showed that all considered interpolation methods resulted in the underestimation of the total precipitation volume and that the underestimation was directly proportional to the precipitation amount. More importantly, the underestimation of peaks was very severe for low observation densities and disappeared only for very high-density precipitation observation networks. This result was confirmed by using observed precipitation with different observation densities. Model runoffs showed worse performance for their highest discharges. Using lumped inputs for the models showed deteriorating performance for peak flows as well, even when using simulated precipitation.
  • Thumbnail Image
    ItemOpen Access
    A methodology to estimate flow duration curves at partially ungauged basins
    (2020) Ridolfi, Elena; Kumar, Hemendra; Bárdossy, András
    The flow duration curve (FDC) of streamflow at a specific site has a key role in the knowledge on the distribution and characteristics of streamflow at that site. The FDC gives information on the water regime, providing information to optimally manage the water resources of the river. In spite of its importance, because of the lack of streamflow gauging stations, the FDC construction can be a not straightforward task. In partially gauged basins, FDCs are usually built using regionalization among the other methods. In this paper we show that the FDC is not a characteristic of the basin only, but of both the basin and the weather. Different weather conditions lead to different FDCs for the same catchment. The differences can often be significant. Similarly, the FDC built at a site for a specific period cannot be used to retrieve the FDC at a different site for the same time window. In this paper, we propose a new methodology to estimate FDCs at partially gauged basins (i.e., target sites) using precipitation data gauged at another basin (i.e., donor site). The main idea is that it is possible to retrieve the FDC of a target period of time using the data gauged during a given donor time period for which data are available at both target and donor sites. To test the methodology, several donor and target time periods are analyzed and results are shown for different sites in the USA. The comparison between estimated and actually observed FDCs shows the reasonability of the approach, especially for intermediate percentiles.