02 Fakultät Bau- und Umweltingenieurwissenschaften
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/3
Browse
2 results
Search Results
Item Open Access An adaptive hybrid vertical equilibrium/full‐dimensional model for compositional multiphase flow(2022) Becker, Beatrix; Guo, Bo; Buntic, Ivan; Flemisch, Bernd; Helmig, RainerEfficient compositional models are required to simulate underground gas storage in porous formations where, for example, gas quality (such as purity) and loss of gas due to dissolution are of interest. We first extend the concept of vertical equilibrium (VE) to compositional flow, and derive a compositional VE model by vertical integration. Second, we present a hybrid model that couples the efficient compositional VE model to a compositional full‐dimensional model. Subdomains, where the compositional VE model is valid, are identified during simulation based on a VE criterion that compares the vertical profiles of relative permeability at equilibrium to the ones simulated by the full‐dimensional model. We demonstrate the applicability of the hybrid model by simulating hydrogen storage in a radially symmetric, heterogeneous porous aquifer. The hybrid model shows excellent adaptivity over space and time for different permeability values in the heterogeneous region, and compares well to the full‐dimensional model while being computationally efficient, resulting in a runtime of roughly one‐third of the full‐dimensional model. Based on the results, we assume that for larger simulation scales, the efficiency of this new model will increase even more.Item Open Access Development of efficient multiscale multiphysics models accounting for reversible flow at various subsurface energy storage sites(Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart, 2021) Becker, Beatrix; Helmig, Rainer (Prof. Dr.-Ing.)Energy storage is an essential component of future energy systems with a large share of renewable energy. Apart from pumped hydro storage, large scale energy storage is mainly provided by underground energy storage systems. In this thesis we focus on chemical subsurface storage, i.e., the storage of synthetic hydrogen or synthetic natural gas in porous formations. To improve understanding of the complex and coupled processes in the underground and enable planning and risk assessment of subsurface energy storage, efficient, consistent and adequate numerical models for multiphase flow and transport are required. Simulating underground energy storage requires large domains, including local features such as fault zones and a representation of the transient saline front, and simulation times spanning the whole time of plant operation and beyond. In addition, often a large number of simulation runs need to be conducted to quantify parameter uncertainty, and efficient models are needed for data assimilation as well. Therefore, a reduction of model complexity and thus computing effort is required. Numerous simplified models that require less computational resources have been developed. In this thesis we focus on a group of multiscale models which use vertically integrated equations and implicitly include fine-scale information along the vertical direction that is reconstructed assuming vertical equilibrium (VE). Classical VE models are restricted to situations where vertical equilibrium is valid in the whole domain during most of the simulated time. This may not be the case for underground energy storage, where simulated times may be too short and locally a high degree of accuracy and complexity may be required, e.g., around the area where gas is extracted for the purpose of energy production. The three core chapters of this thesis present solutions to adapt VE models for the simulation of underground energy storage, with increasing complexity.