02 Fakultät Bau- und Umweltingenieurwissenschaften
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/3
Browse
2 results
Search Results
Item Open Access Darcy, Forchheimer, Brinkman and Richards : classical hydromechanical equations and their significance in the light of the TPM(2020) Ehlers, WolfgangIn hydromechanical applications, Darcy, Brinkman, Forchheimer and Richards equations play a central role when porous media flow under saturated and unsaturated conditions has to be investigated. While Darcy, Brinkman, Forchheimer and Richards found their equations mainly on the basis of flow observations in field and laboratory experiments, the modern Theory of Porous Media allows for a scientific view at these equations on the basis of precise continuum mechanical and thermodynamical investigations. The present article aims at commenting the classical equations and at deriving their counterparts by the use of the thermodynamical consistent Theory of Porous Media. This procedure will prove that the classical equations are valid under certain restrictions and that extended equations exist valid for arbitrary cases in their field.Item Open Access Modelling and simulation of natural hydraulic fracturing applied to experiments on natural sandstone cores(2024) Wang, Junxiang; Sonntag, Alixa; Lee, Dongwon; Xotta, Giovanna; Salomoni, Valentina A.; Steeb, Holger; Wagner, Arndt; Ehlers, WolfgangUnder in-situ conditions, natural hydraulic fractures (NHF) can occur in permeable rock structures as a result of a rapid decrease of pore water accompanied by a local pressure regression. Obviously, these phenomena are of great interest for the geo-engineering community, as for instance in the framework of mining technologies. Compared to induced hydraulic fractures, NHF do not evolve under an increasing pore pressure resulting from pressing a fracking fluid in the underground but occur and evolve under local pore-pressure reductions resulting in tensile stresses in the rock material. The present contribution concerns the question under what quantitative circumstances NHF emerge and evolve. By this means, the novelty of this article results from the combination of numerical investigations based on the Theory of Porous Media with a tailored experimental protocol applied to saturated porous sandstone cylinders. The numerical investigations include both pre-existing and evolving fractures described by use of an embedded phase-field fracture model. Based on this procedure, representative mechanical and hydraulic loading scenarios are simulated that are in line with experimental investigations on low-permeable sandstone cylinders accomplished in the Porous Media Lab of the University of Stuttgart. The values of two parameters, the hydraulic conductivity of the sandstone and the critical energy release rate of the fracture model, have turned out essential for the occurrence of tensile fractures in the sandstone cores, where the latter is quantitatively estimated by a comparison of experimental and numerical results. This parameter can be taken as reference for further studies of in-situ NHF phenomena and experimental results.