02 Fakultät Bau- und Umweltingenieurwissenschaften

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/3

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    ItemOpen Access
    Experimental evaluation and uncertainty quantification for a fractional viscoelastic model of salt concrete
    (2022) Hinze, Matthias; Xiao, Sinan; Schmidt, André; Nowak, Wolfgang
    This study evaluates and analyzes creep testing results on salt concrete of type M2. The concrete is a candidate material for long-lasting structures for sealing underground radioactive waste repository sites. Predicting operational lifetime and security aspects for these structures requires specific constitutive equations to describe the material behavior. Thus, we analyze whether a fractional viscoelastic constitutive law is capable of representing the long-term creep and relaxation processes for M2 concrete. We conduct a creep test to identify the parameters of the fractional model. Moreover, we use the Bayesian inversion method to evaluate the identifiability of the model parameters and the suitability of the experimental setup to yield a reliable prediction of the concrete behavior. Particularly, this Bayesian analysis allows to incorporate expert knowledge as prior information, to account for limited experimental precision and finally to rigorously quantify the post-calibration uncertainty.