02 Fakultät Bau- und Umweltingenieurwissenschaften
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/3
Browse
2 results
Search Results
Item Open Access A systematic review and meta-analysis on the longitudinal effects of unilateral knee extension exercise on muscle strength(2020) Altan, Ekin; Seide, Svenja; Bayram, Ismail; Gizzi, Leonardo; Ertan, Hayri; Röhrle, OliverThe aim of the study was to investigate the time-dependent increase in the knee extensors' isometric strength as a response to voluntary, unilateral, isometric knee extension exercise (UIKEE). To do so, a systematic review was carried out to obtain data for a Bayesian longitudinal model-based meta-analysis (BLMBMA). For the systematic review, PubMed, Web of Science, SCOPUS, Chochrane Library were used as databases. The systematic review included only studies that reported on healthy, young individuals performing UIKEE. Studies utilizing a bilateral training protocol were excluded as the focus of this review lied on unilateral training. Out of the 3,870 studies, which were reviewed, 20 studies fulfilled the selected inclusion criteria. These 20 studies were included in the BLMBMA to investigate the time-dependent effects of UIKEE. If compared to the baseline strength of the trained limb, these data reveal that UKIEE can increase the isometric strength by up to 46%. A meta-analysis based on the last time-point of each available study was employed to support further investigations into UIKEE-induced strength increase. A sensitivity analysis showed that intensity of training (%MVC), fraction of male subjects and the average age of the subject had no significant influence on the strength gain. Convergence of BLMBMA revealed that the peak strength increase is reached after ~4 weeks of UIKEE training.Item Open Access 3D ultrasound-based determination of skeletal muscle fascicle orientations(2024) Sahrmann, Annika S.; Vosse, Lukas; Siebert, Tobias; Handsfield, Geoffrey G.; Röhrle, OliverArchitectural parameters of skeletal muscle such as pennation angle provide valuable information on muscle function, since they can be related to the muscle force generating capacity, fiber packing, and contraction velocity. In this paper, we introduce a 3D ultrasound-based workflow for determining 3D fascicle orientations of skeletal muscles. We used a custom-designed automated motor driven 3D ultrasound scanning system for obtaining 3D ultrasound images. From these, we applied a custom-developed multiscale-vessel enhancement filter-based fascicle detection algorithm and determined muscle volume and pennation angle. We conducted trials on a phantom and on the human tibialis anterior (TA) muscle of 10 healthy subjects in plantarflexion (157 ± 7 ∘), neutral position (109 ± 7 ∘, corresponding to neutral standing), and one resting position in between (145 ± 6 ∘). The results of the phantom trials showed a high accuracy with a mean absolute error of 0.92 ± 0.59 ∘. TA pennation angles were significantly different between all positions for the deep muscle compartment; for the superficial compartment, angles are significantly increased for neutral position compared to plantarflexion and resting position. Pennation angles were also significantly different between superficial and deep compartment. The results of constant muscle volumes across the 3 ankle joint angles indicate the suitability of the method for capturing 3D muscle geometry. Absolute pennation angles in our study were slightly lower than recent literature. Decreased pennation angles during plantarflexion are consistent with previous studies. The presented method demonstrates the possibility of determining 3D fascicle orientations of the TA muscle in vivo.