02 Fakultät Bau- und Umweltingenieurwissenschaften
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/3
Browse
Search Results
Item Open Access Performance-oriented design and assessment of naturally ventilated buildings(2021) Sakiyama, Nayara R. M.; Garrecht, Harald (Prof.)A high-performance building must fulfill comfort and energy efficiency requirements. Possible solutions include passive strategies, such as improving the building envelope and taking advantage of natural light and ventilation. Natural ventilation (NV), for instance, can provide both thermal comfort and energy savings. However, its performance relies on building design and interaction with the local environmental characteristics. In this study, Natural Ventilation Potential (NVP) was analyzed under two approaches: a general evaluation using meteorological data and a specific investigation through building simulation, using an experimental house as a reference case located in a temperate climate with warm summer. Although there are many parameters and metrics applied in assessing NVP, predicting building air change rates (ACH) and airflows is a challenge for designers seeking to deal with this passive strategy. Among the methods available for this task, Computational Fluid Dynamics (CFD) appears as the most compelling, in ascending use. However, CFD simulations have high computational costs, besides requiring a range of settings and skills that inhibit its wide application. Therefore, a pragmatic CFD framework to promote wind-driven assessments through 3D parametric modeling platforms was proposed as an attractive alternative to enable the tool application. The approach addresses all simulation steps: geometry and weather definition, model set-up, control, results edition, and visualization. Besides, it explores alternatives to display and compute ACH and parametrically generates horizontal planes across the spaces to calculate surface average air velocities. Usually, network models throughout Building Energy Simulation (BES) are the most employed NV investigations approach, especially in annual analysis. Nevertheless, as the wind is a significant driving force for ventilation, wind pressure coefficients (Cp) represent a critical boundary condition when assessing building airflows, influencing BES models’ results. The Cp values come from either a primary source that includes CFD simulations or a secondary one where the primary is considered the most reliable. In this sense, a performance metric was proposed, namely the Natural Ventilation Effectiveness (NVE). It verifies when outdoor airflows can maintain indoor temperatures within a comfortable range. The metric uses BES results, and within this context, the impact of five different Cp sources on its outputs was investigated. Three secondary sources and surface-averaged Cp values calculated with CFD for both the whole façade and windows were considered. The differences between the CFD Cp values are minor when wind direction is normal to the surface, with more significant discrepancies for the openings close to roof eaves. Although there was considerable variance among the Cp sources, its effect on the NVE was relatively small. Additionally, when designing high-performance buildings for cold climates, efficient insulating systems are encouraged since they help reduce heat losses through the building envelope, thus promoting building energy savings. Still, climate exposure deteriorates material properties, compromising a building’s energy performance over its lifetime. Therefore, this aging impact on the hygrothermal performance of an aerogel-based insulating system was investigated through a large-scale test, U-Value measurements, and heat and moisture transfer (HMT) models, calibrated with the experimental data. A low thermal conductivity degradation was measured after the tests, showing that its effectiveness is not harshly compromised throughout its life-cycle. Finally, this research performed parametric modeling and optimization to minimize annual building energy demand and maximize NVE. The workflow was divided into i) model setting, ii) sensitivity analyses (SA), and iii) multi-objective optimization (MOO), with a straightforward process implemented through a parametric platform. Input variables dimension was firstly reduced with SA, and the last step ran with a model-based optimization algorithm (RBFOpt). MOO results showed a remarkable potential for NV and heating energy savings. The design solutions could be employed in similar typologies and climates, and the adopted framework configures a practical and replicable approach for design approaches aiming to develop high-performance buildings through MOO.Item Open Access Building optimization through a parametric design platform : using sensitivity analysis to improve a radial based algorithm performance(2021) Sakiyama, Nayara R. M.; Carlo, Joyce C.; Mazzaferro, Leonardo; Garrecht, HaraldPerformance-based design using computational and parametric optimization is an effective strategy to solve the multiobjective problems typical of building design. In this sense, this study investigates the developing process of parametric modeling and optimization of a naturally ventilated house located in a region with well-defined seasons. Its purpose is to improve its thermal comfort during the cooling period by maximizing Natural Ventilation Effectiveness (NVE) and diminishing annual building energy demand, namely Total Cooling Loads (TCL) and Total Heating Loads (THL). Following a structured workflow, divided into (i) model setting, (ii) Sensitivity Analyses (SA), and (iii) Multiobjective Optimization (MOO), the process is straightforwardly implemented through a 3D parametric modeling platform. After building set up, the input variables number is firstly reduced with SA, and the last step runs with an innovative model-based optimization algorithm (RBFOpt), particularly appropriate for time-intensive performance simulations. The impact of design variables on the three-performance metrics is comprehensively discussed, with a direct relationship between NVE and TCL. MOO results indicate a great potential for natural ventilation and heating energy savings for the residential building set as a reference, showing an improvement between 14-87% and 26-34% for NVE and THL, respectively. The approach meets the current environmental demands related to reducing energy consumption and CO2 emissions, which include passive design implementations, such as natural or hybrid ventilation. Moreover, the design solutions and building orientation, window-to-wall ratio, and envelope properties could be used as guidance in similar typologies and climates. Finally, the adopted framework configures a practical and replicable approach for studies aiming to develop high-performance buildings through MOO.Item Open Access Using CFD to evaluate natural ventilation through a 3D parametric modeling approach(2021) Sakiyama, Nayara R. M.; Frick, Jürgen; Bejat, Timea; Garrecht, HaraldPredicting building air change rates is a challenge for designers seeking to deal with natural ventilation, a more and more popular passive strategy. Among the methods available for this task, computational fluid dynamics (CFD) appears the most compelling, in ascending use. However, CFD simulations require a range of settings and skills that inhibit its wide application. With the primary goal of providing a pragmatic CFD application to promote wind-driven ventilation assessments at the design phase, this paper presents a study that investigates natural ventilation integrating 3D parametric modeling and CFD. From pre- to post-processing, the workflow addresses all simulation steps: geometry and weather definition, including incident wind directions, a model set up, control, results’ edition, and visualization. Both indoor air velocities and air change rates (ACH) were calculated within the procedure, which used a test house and air measurements as a reference. The study explores alternatives in the 3D design platform’s frame to display and compute ACH and parametrically generate surfaces where air velocities are computed. The paper also discusses the effectiveness of the reference building’s natural ventilation by analyzing the CFD outputs. The proposed approach assists the practical use of CFD by designers, providing detailed information about the numerical model, as well as enabling the means to generate the cases, visualize, and post-process the results.