02 Fakultät Bau- und Umweltingenieurwissenschaften
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/3
Browse
61 results
Search Results
Item Open Access Optimal design of experiments to improve the characterisation of atrazine degradation pathways in soil(2021) Chavez Rodriguez, Luciana; González‐Nicolás, Ana; Ingalls, Brian; Streck, Thilo; Nowak, Wolfgang; Xiao, Sinan; Pagel, HolgerContamination of soils with pesticides and their metabolites is a global environmental threat. Deciphering the complex process chains involved in pesticide degradation is a prerequisite for finding effective solution strategies. This study applies prospective optimal design (OD) of experiments to identify laboratory sampling strategies that allow model‐based discrimination of atrazine (AT) degradation pathways. We simulated virtual AT degradation experiments with a first‐order model that reflects a simple reaction chain of complete AT degradation. We added a set of Monod‐based model variants that consider more complex AT degradation pathways. Then, we applied an extended constraint‐based parameter search algorithm that produces Monte‐Carlo ensembles of realistic model outputs, in line with published experimental data. Differences between‐model ensembles were quantified with Bayesian model analysis using an energy distance metric. AT degradation pathways following first‐order reaction chains could be clearly distinguished from those predicted with Monod‐based models. As expected, including measurements of specific bacterial guilds improved model discrimination further. However, experimental designs considering measurements of AT metabolites were most informative, highlighting that environmental fate studies should prioritise measuring metabolites for elucidating active AT degradation pathways in soils. Our results suggest that applying model‐based prospective OD will maximise knowledge gains on soil systems from laboratory and field experiments.Item Open Access Sustainability assessment of fuel cell buses in public transport(2018) Lozanovski, Aleksandar; Whitehouse, Nicole; Ko, Nathanael; Whitehouse, SimonHydrogen fuel cell (H2FC) buses operating in every day public transport services around Europe are assessed for their sustainability against environmental, economic and social criteria. As part of this assessment the buses are evaluated against diesel buses both in terms of sustainability and in terms of meeting real world requirements with respect to operational performance. The study concludes that H2FC buses meet operability and performance criteria and are sustainable environmentally when ‘green’ hydrogen is used. The economic sustainability of the buses, in terms of affordability, achieves parity with their fossil fuel equivalent by 2030 when the indirect costs to human health and climate change are included. Societal acceptance by those who worked with and used the buses supports the positive findings of earlier studies, although satisfactory operability and performance are shown to be essential to positive attitudes. Influential policy makers expressed positive sentiments only if ‘green’ hydrogen is used and the affordability issues can be addressed. No “show-stopper” is identified that would prevent future generations from using H2FC buses in public transport on a broad scale due to damage to the environment or to other factors that impinge on quality of life.Item Open Access Large-scale high head pico hydropower potential assessment(Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart, 2018) Schröder, Hans Christoph; Wieprecht, Silke (Prof. Dr.-Ing.)Due to a lack of site-related information, Pico hydropower (PHP) has hardly been a projectable resource so far. This is particularly true for large area PHP potential information that could open a perspective to increase the size of development projects by aggregating individual PHP installations. The present work is extending the capabilities of GIS based hydropower potential assessment into the PHP domain through a GIS based PHP potential assessment procedure that facilitates the discrimination of areas without high head PHP potential against areas with PHP potential and against areas with so called “favorable PHP potential”. The basic unit of the spatial output is determined by the underlying PHP potential definition of this work: a standardized PHP installation and the required hydraulic source, together called standard unit, are located on an area of one square kilometer. The gradation of the output is a consequence of the verification techniques. Several large area PHP potential field assessment methods, based on contemplative analysis techniques, are developed in this work. Field assessments were conducted in Yunnan Province/China, Costa Rica, Ecuador and Sri Lanka. The aim for all field assessments is to get a comprehensive view on the PHP potential distribution of the entire country/province. Application of the GIS based PHP potential assessment procedure is aimed at the global tropical and subtropical regions.Item Open Access Porosity and permeability alterations in processes of biomineralization in porous media - microfluidic investigations and their interpretation(Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart, 2022) Weinhardt, Felix; Class, Holger (apl. Prof. Dr.-Ing)Motivation: Biomineralization refers to microbially induced processes resulting in mineral formations. In addition to complex biomineral structures frequently formed by marine organisms, like corals or mussels, microbial activities may also indirectly induce mineralization. A famous example is the formation of stromatolites, which result from biofilm activities that locally alter the chemical and physical properties of the environment in favor of carbonate precipitation. Recently, biomineralization gained attention as an engineering application. Especially with the background of global warming and the objective to reduce CO2 emissions, biomineralization offers an innovative and sustainable alternative to the usage of conventional Portland cement, whose production currently contributes significantly to global CO2 emissions. The most widely used method of biomineralization in engineering applications, is ureolytic calcium carbonate precipitation, which relies on the hydrolysis of urea and the subsequent precipitation of calcium carbonate. The hydrolysis of urea at moderate temperatures is relatively slow and therefore needs to be catalyzed by the enzyme urease to be practical for applications. Urease can be extracted from plants, for example from ground jack beans, and the process is consequently referred to as enzyme-induced calcium carbonate precipitation (ECIP). Another method is microbially induced calcium carbonate precipitation (MICP), which uses ureolytic bacteria that produce the enzyme in situ. EICP and MICP applications allow for producing various construction materials, stabilizing soils, or creating hydraulic barriers in the subsurface. The latter can be used, for example, to remediate leakages at the top layer of gas storage reservoirs, or to contain contaminant plumes in aquifers. Especially when remediating leakages in the subsurface, the most crucial parameter to be controlled is its intrinsic permeability. A valuable tool for predicting and planning field applications is the use of numerical simulation at the scale of representative elementary volumes (REV). For that, the considered domain is subdivided into several REV’s, which do not resolve the pore space in detail, but represent it by averaged parameters, such as the porosity and permeability. The porosity describes the ratio of the pore space to the considered bulk volume, and the permeability quantifies the ease of fluid flow through a porous medium. A change in porosity generally also affects permeability. Therefore, for REV-scale simulations, constitutive relationships are utilized to describe permeability as a function of porosity. There are several porosity-permeability relationships in the literature, such as the Kozeny-Carman relationship, Verma-Pruess, or simple power-law relationships. These constitutive relationships can describe individual states but usually do not include the underlying processes. Different boundary conditions during biomineralization may influence the course of porosity-permeability relationships. However, these relationships have not yet been adequately addressed. Pore-scale simulations are, in principle, very well suited to investigate pore space changes and their effects on permeability systematically. However, these simulations also rely on simplifications and assumptions. Therefore, it is essential to conduct experimental studies to investigate the complex processes during calcium carbonate precipitation in detail at the pore scale. Recent studies have shown that microfluidic methods are particularly suitable for this purpose. However, previous microfluidic studies have not explicitly addressed the impact of biomineralization on hydraulic effects. Therefore, this work aims to identify relevant phenomena at the pore scale to conclude on the REV-scale parameters, porosity and permeability, and their relationship. Contributions: This work comprises three publications. First, a suitable microfluidic setup and workflow were developed in Weinhardt et al. [2021a] to study pore space changes and the associated hydraulic effects reliably. This paper illustrated the benefits and insights of combining optical microscopy and micro X-ray computed tomography (micro XRCT) with hydraulic measurements in microfluidic chips. The elaborated workflow allowed for quantitative analysis of the evolution of calcium carbonate precipitates in terms of their size, shape, and spatial distribution. At the same time, their influence on differential pressure could be observed as a measure of flow resistance. Consequently, porosity and permeability changes could be determined. Along with this paper, we published two data sets [Weinhardt et al., 2021b, Vahid Dastjerdi et al., 2021] and set the basis for two other publications. In the second publication [von Wolff et al., 2021], the simulation results of a pore-scale numerical model, developed by Lars von Wolff, were compared to the experimental data of the first paper [Weinhardt et al., 2021b]. We observed a good agreement between the experimental data and the model results. The numerical studies complemented the experimental observations in allowing for accurate analysis of crystal growth as a function of local velocity profiles. In particular, we observed that crystal aggregates tend to grow toward the upstream side, where the supply of reaction products is higher than on the downstream side. Crystal growth during biomineralization under continuous inflow is thus strongly dependent on the locally varying velocities in a porous medium. In the third publication [Weinhardt et al., 2022a], we conducted further microfluidic experiments based on the experimental setup and workflow of the first contribution and published another data set [Weinhardt et al., 2022b]. We used microfluidic cells with a different, more realistic pore structure and investigated the influence of different injection strategies. We found that the development of preferential flow paths during EICP application may depend on the given boundary conditions. Constant inflow rates can lead to the development of preferential flow paths and keep them open. Gradually reduced inflow rates can mitigate this effect. In addition, we concluded that the coexistence of multiple calcium carbonate polymorphs and their transformations could influence the temporal evolution of porosity-permeability relationships.Item Open Access Fluid-phase transitions in a multiphasic model of CO2 sequestration into deep aquifers : a fully coupled analysis of transport phenomena and solid deformation(Stuttgart : Institut für Mechanik (Bauwesen), Lehrstuhl für Kontinuumsmechanik, Universität Stuttgart, 2017) Häberle, Kai; Ehlers, Wolfgang (Prof. Dr.-Ing. Dr. h. c.)Item Open Access Managing uncertainties in LCA dataset selection(2019) Pfeuffer, Simon; Wehner, Daniel; Bouslama, RaedThe selection of LCA datasets requires an understanding of the available datasets in a database and awareness about the uncertainties associated with the dataset selection. Therefore, a graphical presentation technique is introduced to support the communication of information about available datasets and uncertainties.Item Open Access Long-term lumped projections of groundwater balances in the face of limited data(Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart, 2024) Ejaz, Fahad; Nowak, Wolfgang (Prof. Dr.-Ing.)Item Open Access Statistical analysis of climate trends and impacts on groundwater sustainability in the Lower Indus Basin(2024) Ahmed, Waqas; Ahmed, Suhail; Punthakey, Jehangir F.; Dars, Ghulam Hussain; Ejaz, Muhammad Shafqat; Qureshi, Abdul Latif; Mitchell, MichaelAgricultural intensification is increasing global demand for water, with groundwater especially susceptible given its year-round reliability. Climate change impacts on groundwater recharge exacerbate uncertainties for future access and use, especially for large aquifers across alluvial plains such as the Indus Basin of Pakistan. To generate better understanding of climate change impacts on groundwater balances in such contexts, we used MODFLOW 2005 to quantify the groundwater budget of the Northern Rohri Canal Command Area under RCP 4.5 and 8.5 climatic scenarios, while also taking climatic regionalisation into account. Under a baseline scenario, total annual pumping in the northern Rohri command was estimated to be 3.619 billion cubic metres (BCM), and the total net loss in storage over the simulation period from October 2010 to April 2014 was estimated at 1.244 BCM per year. By 2047, net decline in storage is projected to more than double to 2.185 per year under RCP 4.5 scenario and 2.214 under RCP 8.5. Our estimates suggest that a sustainable yield across the command area should be managed at approximately 3 ± 0.3 BCM per year to ensure sufficient adaptive reserves of groundwater for access during times of drought and inadequate surface supply, while also reducing waterlogging impacts from high watertables. This first-time estimate of sustainable yield provides irrigation system managers with an overall guide from which divisional-scale measures to achieve the goal can be identified through stakeholder engagement.Item Open Access Sichere Trinkwasserversorgung trotz Klimawandel - wie resilient sind unsere Systeme und wo besteht Handlungsbedarf? : 32. Trinkwasserkolloquium, 20.02.2020(Stuttgart : Institut für Siedlungswasserbau, Wassergüte- und Abfallwirtschaft der Universität Stuttgart ISWA, 2020) Langner, Markus; Gudera, Thomas; Jeromin, Christoph; Haakh, Frieder; Ott, Franz; Witte, Ralf; Haakh, Frieder; Jeromin, Christoph; Schönberger, HaraldDas Trockenjahr 2018 war ein Vorbote dessen, was selbst bei Einhaltung des 2°-Ziels der globalen Erwärmung zukünftig als Normaljahr zu erwarten ist. Wie kann auch in Zukunft eine sichere Wasserversorgung in Baden-Württemberg gewährleistet werden?Item Open Access Stochastic and hydrological modelling for climate change prediction in the Lima region, Peru(2015) Chamorro Chávez, Alejandro; Bárdossy, András (Prof. Dr. rer. nat. Dr.-Ing.)Climate change has been an important field of research in the past years and certainly is a major concern in the present time. It involves a broad spectrum of subjects and significant different time scales, ranging from decades to thousands or millions of years. Generally speaking, in a climate change scenario a change in the pattern, average or extreme conditions of some variables is observed, and this can be due to many different causes as changing processes in the earth, human activities or extra terrestrial induced factors. This study concentrates on the influences on the climate due to human activities and focuses on the hydrological response to these influences or changes as a primarily goal, for the next few decades. The main motivation is the vulnerability and scarcity of the water availability in the capital of Peru, Lima, and how the area under study will respond to a change in the climate. An important focus of analysis in order to reduce the uncertainty in the predictions is the errors that appears when modeling a given variable or set of variables. This issue is addressed first in regionalization of precipitation and second in the calibration of hydrological models in which a robust parameter estimation is performed. In the first issue concerning to regionalization, External Drift Kriging is applied. In this part of the work the results of regionalization are analyzed with focus on the errors and systematic errors which appear during the modeling. The main goal here is the reduction of these errors through some proposed transformations. Here, three approaches are suggested, namely smoothing of the digital elevation model (DEM) considering a symmetric area, power transformation and smoothing considering a non symmetric area. The second issue concerning the uncertainty in the estimations (discharge) was addressed two-fold, namely by optimizing the objective function by means of a heuristic optimization procedure based on Monte Carlo simulation, and by means of a robust parameter estimation (ROPE) algorithm developed quite recently by Bárdossy and Singh, which in general terms can be used as a general multivariate optimization procedure. The algorithm offers a way of finding a set of “good” parameter vectors, which among other characteristics, are transferable in time. The final result comprises an ensemble of estimations for expected discharge variations accounting for the uncertainty in parameterization and processes description in the models. In this study HVB and HYMOD models are used. The assessment of the impact of climate change in precipitation and temperature is carried out by a statistical downscaling procedure based on a quantil-quantil transformation. Here the information given by the Global Climate Models (GCMs) outputs are transferred to the local scale. Two different GCMs and three scenarios are used in this step. This permitted the definition of a range for the expected future variations for temperature and precipitation. The last chapter of the study addresses the assessment of the discharge in the short term. The goal here is to “infer” the outcome of a random variable (discharge) in the next time step by taking information from past observations (previous steps). As we can regard the observations (time series) as a realization generated from a stochastic process, we can address this issue from a stochastic point of view. The task is addressed first by considering some of the existing autoregressive models (AR process), and second by considering a Copula-based autoregressive model. In order to perform the Copula-based autoregressive model, a given time series (modelled discharge) was transformed into three vectors representing the same original time series but shifted in time. A three dimensional Copula was then fitted to the univariate distributions. For this, a Gaussian model as well as a Beta kernel model expressed in terms of the Beta function was considered.