02 Fakultät Bau- und Umweltingenieurwissenschaften

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/3

Browse

Search Results

Now showing 1 - 10 of 50
  • Thumbnail Image
    ItemOpen Access
    Linking cortex and contraction : integrating models along the corticomuscular pathway
    (2023) Haggie, Lysea; Schmid, Laura; Röhrle, Oliver; Besier, Thor; McMorland, Angus; Saini, Harnoor
    Computational models of the neuromusculoskeletal system provide a deterministic approach to investigate input-output relationships in the human motor system. Neuromusculoskeletal models are typically used to estimate muscle activations and forces that are consistent with observed motion under healthy and pathological conditions. However, many movement pathologies originate in the brain, including stroke, cerebral palsy, and Parkinson’s disease, while most neuromusculoskeletal models deal exclusively with the peripheral nervous system and do not incorporate models of the motor cortex, cerebellum, or spinal cord. An integrated understanding of motor control is necessary to reveal underlying neural-input and motor-output relationships. To facilitate the development of integrated corticomuscular motor pathway models, we provide an overview of the neuromusculoskeletal modelling landscape with a focus on integrating computational models of the motor cortex, spinal cord circuitry, α-motoneurons  and skeletal muscle in regard to their role in generating voluntary muscle contraction. Further, we highlight the challenges and opportunities associated with an integrated corticomuscular pathway model, such as challenges in defining neuron connectivities, modelling standardisation, and opportunities in applying models to study emergent behaviour. Integrated corticomuscular pathway models have applications in brain-machine-interaction, education, and our understanding of neurological disease.
  • Thumbnail Image
    ItemOpen Access
    Determination of muscle shape deformations of the tibialis anterior during dynamic contractions using 3D ultrasound
    (2024) Sahrmann, Annika S.; Vosse, Lukas; Siebert, Tobias; Handsfield, Geoffrey G.; Röhrle, Oliver
    Purpose: In this paper, we introduce a novel method for determining 3D deformations of the human tibialis anterior (TA) muscle during dynamic movements using 3D ultrasound. Materials and Methods: An existing automated 3D ultrasound system is used for data acquisition, which consists of three moveable axes, along which the probe can move. While the subjects perform continuous plantar- and dorsiflexion movements in two different controlled velocities, the ultrasound probe sweeps cyclically from the ankle to the knee along the anterior shin. The ankle joint angle can be determined using reflective motion capture markers. Since we considered the movement direction of the foot, i.e., active or passive TA, four conditions occur: slow active, slow passive, fast active, fast passive. By employing an algorithm which defines ankle joint angle intervals, i.e., intervals of range of motion (ROM), 3D images of the volumes during movement can be reconstructed. Results: We found constant muscle volumes between different muscle lengths, i.e., ROM intervals. The results show an increase in mean cross-sectional area (CSA) for TA muscle shortening. Furthermore, a shift in maximum CSA towards the proximal side of the muscle could be observed for muscle shortening. We found significantly different maximum CSA values between the fast active and all other conditions, which might be caused by higher muscle activation due to the faster velocity. Conclusion: In summary, we present a method for determining muscle volume deformation during dynamic contraction using ultrasound, which will enable future empirical studies and 3D computational models of skeletal muscles.
  • Thumbnail Image
    ItemOpen Access
    Microbial biostabilization in fine sediments
    (2022) Gerbersdorf, Sabine Ulrike; Wieprecht, Silke (Prof. Dr.-Ing.)
    Microbial biostabilization has increasingly received attention over the last years due to its significance for the dynamics of fine sediments in fluvial and coastal systems with implications for ecology, economy and human-health. This habilitation thesis highlights the contributions of the applicant and her team to this multi-disciplinary research area and is based on eight core publications that are presented in seven chapters. First, the topic of biofilm and biostabilization is introduced and second, the materials and methods applied are presented before own research findings are discussed. To start with, the stabilization potential of heterotrophic bacterial assemblages has been emphasised as well as the adhesive properties of the protein moieties within the EPS (extracellular polymeric substances) that are more significant than previously thought. Furthermore, the engineering potential of estuarine prokaryotic and eukaryotic assemblages has been studied separately and combined to reveal the effective cooperation of mixed biofilm that resulted in highest substratum stabilization although the effects were not clearly synergistic (=more than additive). The significance of biostabilization could be evidenced as well for freshwaters where highest adhesive capacity and sediment stability occurred during spring. Microbial community composition differed accordingly to result in mechanically highly diverse biofilm. Moreover, the importance of two of the most influential abiotic conditions, light intensity and hydrodynamics, was shown for biofilm growth, species composition and functionality - here biostabilization. In order to test adhesive properties at the relevant mesoscale (mm-cm) but non-destructively and highly sensitive, MagPI (Magnetic Particle Induction) has been applied. The last chapter concerns technical aspects to further improve its performance while demonstrating the impact of material and geometry and the importance of both, magnetic field strength and field gradient for the physics of the MagPI approach.
  • Thumbnail Image
    ItemOpen Access
    Der Abbau von Fluorbenzol und seinen Homologen durch Burkholderia fungorum FLU 100
    (2007) Strunk, Niko; Engesser, Karl-Heinrich (Prof. Dr.)
    Der Stamm Burkholderia fungorum FLU 100 besitzt die unter den Bakterien äußerst selten zu findende Eigenschaft, Fluorbenzol als alleinige Kohlenstoff- und Energiequelle nutzen zu können. Außerdem kann der Stamm auch die anderen Monohalogenbenzole sowie Benzol und Toluol - als Reinstoff oder in beliebigen Mischungen - vollständig produktiv verwerten. In dieser Arbeit wurden ein Teil des Abbauweges sowie die Einsatzmöglichkeiten des Stammes im Rahmen der biologischen Abluftreinigung erforscht. Der Stamm FLU 100 kann mit Halogenatomen oder Alkylgruppen di- und höher substituierte Benzole nicht abbauen. 3-Fluorphenol ist hingegen abbaubar, jedoch wird hierzu, abweichend vom Fluorbenzolabbauweg, mindestens ein weiteres Enzym, eine Phenoloxygenase exprimiert. Zur Aufklärung der Aromatenabbauwege wurde Burkholderia fungorum FLU 100 mittels einer Tn5 Variante (pCro2) mutiert. Die Untersuchung der gewonnenen Transposonmutanten lieferte zahlreiche Metabolite des oberen Abbauweges. Das initiale Dioxygenasesystem greift die angebotenen benzoiden Substrate stets in Orthoposition zum Substituenten an. Dadurch wird die Aromatizität aufgehoben, es werden in 3 Position substituierte Cyclohexa 3,5 dien 1,2 diole (Diendiole) gebildet, welche beim Abbau von Monohalogenaromaten das Halogenatom in 3 Position tragen. Diese Metabolite werden zu den entsprechenden, an der 3 Position substituierten Catecholen zyklisiert, welche wiederum zu 2 substituierten Muconaten oxidativ gespalten werden. Aus den Muconaten entstehen in einem weiterem Schritt Muconolactone. Die Catechol-1,2-dioxygenase weist dabei klassische Typ – II Kinetik auf. Der Stamm FLU 100 verfügt über eine bemerkenswert hohe Fluorid – Toleranz. Er stellt das Wachstum erst ab 200 mmol/L im Medium ein. Zwei Biotricklingfilter im Technikumsmaßstab wurden konstruiert und über anderthalb Jahre hinweg betrieben. Als Packungsmaterial kam Blähton zum Einsatz. Es zeigte sich, dass fluorbenzolbelastete Abluft mit einer geringen Eliminationskapazität von ca. 5 g/m3h abgereinigt werden konnte, der Wirkungsgrad lag dabei um die 50 %. Eine äquimolare Mischung aus Fluorbenzol und Chlorbenzol konnte mit einer Eliminationskapazität zwischen 6 und 10 g/m3h behandelt werden. Dabei lag der Wirkungsgrad bezüglich des Fluorbenzols bei ca. 50 %, der des Chlorbenzols bei ca. 90 %. In den Reaktorsümpfen sammelten sich Fluorwasserstoff und Chlorwasserstoff als saure Metabolite an. Diese konnten mit Natriumhydrogencarbonat neutralisiert werden. Weiße, kristalline Ablagerungen traten mit der Zeit in den Reaktorsümpfen auf. Diese enthielten entgegen den Erwartungen nur sehr wenig Calciumfluorid (Fluoranteil 5 %), sondern vor allem Calcium, Sauerstoff, Phosphor und Silizium.
  • Thumbnail Image
    ItemOpen Access
    Effect of neglecting passive spinal structures : a quantitative investigation using the forward-dynamics and inverse-dynamics musculoskeletal approach
    (2023) Meszaros-Beller, Laura; Hammer, Maria; Schmitt, Syn; Pivonka, Peter
    Inverse-dynamics (ID) analysis is an approach widely used for studying spine biomechanics and the estimation of muscle forces. Despite the increasing structural complexity of spine models, ID analysis results substantially rely on accurate kinematic data that most of the current technologies are not capable to provide. For this reason, the model complexity is drastically reduced by assuming three degrees of freedom spherical joints and generic kinematic coupling constraints. Moreover, the majority of current ID spine models neglect the contribution of passive structures. The aim of this ID analysis study was to determine the impact of modelled passive structures (i.e., ligaments and intervertebral discs) on remaining joint forces and torques that muscles must balance in the functional spinal unit. For this purpose, an existing generic spine model developed for the use in the demoa software environment was transferred into the musculoskeletal modelling platform OpenSim. The thoracolumbar spine model previously used in forward-dynamics (FD) simulations provided a full kinematic description of a flexion-extension movement. By using the obtained in silico kinematics, ID analysis was performed. The individual contribution of passive elements to the generalised net joint forces and torques was evaluated in a step-wise approach increasing the model complexity by adding individual biological structures of the spine. The implementation of intervertebral discs and ligaments has significantly reduced compressive loading and anterior torque that is attributed to the acting net muscle forces by −200% and −75%, respectively. The ID model kinematics and kinetics were cross-validated against the FD simulation results. This study clearly shows the importance of incorporating passive spinal structures on the accurate computation of remaining joint loads. Furthermore, for the first time, a generic spine model was used and cross-validated in two different musculoskeletal modelling platforms, i.e., demoa and OpenSim, respectively. In future, a comparison of neuromuscular control strategies for spinal movement can be investigated using both approaches.
  • Thumbnail Image
    ItemOpen Access
    The structural and mechanical basis for passive‐hydraulic pine cone actuation
    (2022) Eger, Carmen J.; Horstmann, Martin; Poppinga, Simon; Sachse, Renate; Thierer, Rebecca; Nestle, Nikolaus; Bruchmann, Bernd; Speck, Thomas; Bischoff, Manfred; Rühe, Jürgen
    The opening and closing of pine cones is based on the hygroscopic behavior of the individual seed scales around the cone axis, which bend passively in response to changes in environmental humidity. Although prior studies suggest a bilayer architecture consisting of lower actuating (swellable) sclereid and upper restrictive (non‐ or lesser swellable) sclerenchymatous fiber tissue layers to be the structural basis of this behavior, the exact mechanism of how humidity changes are translated into global movement are still unclear. Here, the mechanical and hydraulic properties of each structural component of the scale are investigated to get a holistic picture of their functional interplay. Measurements of the wetting behavior, water uptake, and mechanical measurements are used to analyze the influence of hydration on the different tissues of the cone scales. Furthermore, their dimensional changes during actuation are measured by comparative micro‐computed tomography (µ‐CT) investigations of dry and wet scales, which are corroborated and extended by 3D‐digital image correlation‐based displacement and strain analyses, biomechanical testing of actuation force, and finite element simulations. Altogether, a model allowing a detailed mechanistic understanding of pine cone actuation is developed, which is a prime concept generator for the development of biomimetic hygromorphic systems.
  • Thumbnail Image
    ItemOpen Access
    Variations in muscle activity and exerted torque during temporary blood flow restriction in healthy individuals
    (2021) Gizzi, Leonardo; Yavuz, Utku Ş.; Hillerkuss, Dominic; Geri, Tommaso; Gneiting, Elena; Domeier, Franziska; Schmitt, Syn; Röhrle, Oliver
    Recent studies suggest that transitory blood flow restriction (BFR) may improve the outcomes of training from anatomical (hypertrophy) and neural control perspectives. Whilst the chronic consequences of BFR on local metabolism and tissue adaptation have been extensively investigated, its acute effects on motor control are not yet fully understood. In this study, we compared the neuromechanical effects of continuous BFR against non-restricted circulation (atmospheric pressure-AP), during isometric elbow flexions. BFR was achieved applying external pressure either between systolic and diastolic (lower pressure-LP) or 1.3 times the systolic pressure (higher pressure-HP). Three levels of torque (15, 30, and 50% of the maximal voluntary contraction-MVC) were combined with the three levels of pressure for a total of 9 (randomized) test cases. Each condition was repeated 3 times. The protocol was administered to 12 healthy young adults. Neuromechanical measurements (torque and high-density electromyography-HDEMG) and reported discomfort were used to investigate the response of the central nervous system to BFR. The investigated variables were: root mean square (RMS), and area under the curve in the frequency domain-for the torque, and average RMS, median frequency and average muscle fibres conduction velocity-for the EMG. The discomfort caused by BFR was exacerbated by the level of torque and accumulated over time. The torque RMS value did not change across conditions and repetitions. Its spectral content, however, revealed a decrease in power at the tremor band (alpha-band, 5-15 Hz) which was enhanced by the level of pressure and the repetition number. The EMG amplitude showed no differences whilst the median frequency and the conduction velocity decreased over time and across trials, but only for the highest levels of torque and pressure. Taken together, our results show strong yet transitory effects of BFR that are compatible with a motor neuron pool inhibition caused by increased activity of type III and IV afferences, and a decreased activity of spindle afferents. We speculate that a compensation of the central drive may be necessary to maintain the mechanical output unchanged, despite disturbances in the afferent volley to the motor neuron pool.
  • Thumbnail Image
    ItemOpen Access
    Microbial stabilization of lotic fine sediments
    (Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart, 2018) Schmidt, Holger; Wieprecht, Silke (Prof. Dr.-Ing.)
    The microbial stabilization of fine sediments constitutes an essential ecosystem function with great ecological and economic implications e.g. in the context of reservoir and waterway management. Although this process is well researched in intertidal mudflats, there is still a major lack of knowledge for lotic systems. To perform fundamental research in this field and to account for the associated very high level of complexity, expertise of natural and engineering science was combined in an interdisciplinary approach. A highly sophisticated mesocosm setup was designed and constructed to guarantee fully controllable and reproducible natural-like boundary conditions during biofilm formation. The overall aim of the performed studies in this doctoral thesis was a comprehensive investigation of all relevant parameters of the cultivated biofilms, such as the microbial biomass, the produced extracellular polymeric substances (EPS), and the composition of the microbial community as well as the stability of the biofilm. This extensive approach should allow the identification of functional key parameters of the biofilm as well as essential interactions and their impact on the overall biofilm ecosystem and resulting biostabilization. In a series of long-term experiments, different influencing factors on biofilm development and corresponding biostabilization were assessed. The first potential impact factor that was analyzed was the experimental setup itself. Furthermore, the influence of the seasonal changes of the microbial community in the utilized river water and the effects of different levels of bed shear stress and illumination intensity were assessed. The results of these different experiments provided essential new insights into the process of biostabilization of lotic fine sediments. Firstly, the reliability of the used experimental setup could be proven, as no significant differences could be detected in biofilm formation and biostabilization comparing different mesocosm sections. The fact that very similar biofilms were developing when the boundary conditions were identical was a crucial prerequisite for any further investigations. In addition, the relevance of biostabilization in lotic systems, which was doubted for a long time, could be proven. However, freshwater and brackish habitat can be very different (e.g. in terms of nutrient availability). This was exemplarily indicated by significantly lower microbial biomass in the analyzed freshwater biofilms compared to biofilms from well-studied intertidal mudflats. Moreover, the very complex interplays between bacteria and diatoms in the biofilm matrix were underlined which led to a focus on this subject during further subsequent studies via an extensive genetic and microscopic profiling. Secondly, the important role of EPS during biostabilization could be demonstrated, whereby the significance of extracellular proteins, such as adhesives produced by sessile diatoms, was suggested. This observation may extend the current EPS research which focusses on extracellular carbohydrates due to their high quantitative fraction in the EPS matrix. Furthermore, the interactions between the microbes, the extracellular matrix and the overall stability of the biofilm system appeared to be much more complex than formerly assumed. Thirdly, the importance of the microbial community in the biofilm system could be elucidated. Even though a high correlation between mere microbial biomass and biostabilization could be detected, especially the seasonality experiments emphasized the impact of the life style of key players among the diatoms. These insights could be extended during the experiments analyzing the different levels of abiotic boundary conditions, where differently stable biofilms were clearly dominated by different assemblages of dominant bacteria. These observations constitute very important new insights into microbial biostabilization as a direct correlation between microbial ecology and the overall, actually measurable ecosystem function of the biofilm could be shown for the first time. Concluding, the insights into the fundamental principles of biostabilization gathered during this thesis can be seen as important steps for further fundamental research. The construction of a reliable unique setup is complete, the reproducible biofilm cultivation in this setup is verified and first investigations of different driving factors during biostabilization were performed. These analyses paved the way for further studies to analyze currently hardly assessed boundary conditions and deeper assessments in order to generate a sound database for future modelling approaches of the dynamics of microbially stabilized lotic fine sediments.
  • Thumbnail Image
    ItemOpen Access
    Life cycle assessment for early-stage process optimization of microbial biosurfactant production using kinetic models : a case study on mannosylerythritol lipids (MEL)
    (2024) Bippus, Lars; Briem, Ann-Kathrin; Beck, Alexander; Zibek, Susanne; Albrecht, Stefan
    Introduction: This study assesses the environmental impacts of mannosylerythritol lipids (MELs) production for process optimization using life cycle assessment (LCA). MELs are glycolipid-type microbial biosurfactants with many possible applications based on their surface-active properties. They are generally produced by fungi from the family of Ustilaginaceae via fermentation in aerated bioreactors. The aim of our work is to accompany the development of biotechnological products at an early stage to enable environmentally sustainable process optimization. Methods: This is done by identifying hotspots and potentials for improvement based on a reliable quantification of the environmental impacts. The production processes of MELs are evaluated in a cradle-to-gate approach using the Environmental Footprint (EF) 3.1 impact assessment method. The LCA model is based on upscaled experimental data for the fermentation and purification, assuming the production at a 10 m³ scale. In the case analyzed, MELs are produced from rapeseed oil and glucose, and purified by separation, solvent extraction, and chromatography. Results: The results of the LCA show that the provision of substrates is a major source of environmental impacts and accounts for 20% of the impacts on Climate Change and more than 70% in the categories Acidification and Eutrophication. Moreover, 33% of the impacts on Climate Change is caused by the energy requirements for aeration of the bioreactor, while purification accounts for 42% of the impacts respectively. For the purification, solvents are identified as the main contributors in most impact categories. Discussion: The results illustrate the potentials for process optimization to reduce the environmental impacts of substrate requirements, enhanced bioreactor aeration, and efficient solvent use in downstream processing. By a scenario analysis, considering both experimental adaptations and prospective variations of the process, the laboratory development can be supported with further findings and hence efficiently optimized towards environmental sustainability. Moreover, the presentation of kinetic LCA results over the fermentation duration shows a novel way of calculating and visualizing results that corresponds to the way of thinking of process engineers using established environmental indicators and a detailed system analysis. Altogether, this LCA study supports and demonstrates the potential for further improvements towards more environmentally friendly produced surfactants.