07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/8
Browse
Item Open Access 3D FEM simulation of titanium alloy (Ti6Al4V) machining with harmonic endmill tools(2023) Kalu-Uka, Abraham; Ozoegwu, Chigbogu; Eberhard, PeterUsually, end milling operations have been carried out using conventional uniform helix tools with fixed helix angles. Thus, many studies have been conducted to study the effects of these tools on the thermomechanical properties of a milling process. Recently, there have been works that point to the benefits of using harmonic endmills. Harmonic endmills consist of cutting edge profiles that have continuously harmonically varying helix angles. The variation is described using a harmonic function of axial position (elevation) of points on the cutting edge. In this work, a 3D finite element simulation using ABAQUS, is carried out for the complex milling process of Titanium alloy Ti6Al4V. The envelope of the harmonic tool is first generated using a set of MATLAB codes and stored in a Standard Triangle Language (.stl) format. The machine tool is introduced into an FEM program which has been designed to provide for dynamic effects, thermo‐mechanical coupling, material damage law and the criterion for contact associated with the milling process. A Johnson‐Cook material constitutive equation which combines the effects of strain hardening, strain softening, and temperature softening is used. To account for the chip separation criterion, the Johnson Cook damage evolution equation is used. The milling process simulation for Ti6Al4V is then carried out. In the end, the stress distribution and the cutting forces are obtained.Item Open Access Adaptive numerical integration of exponential finite elements for a phase field fracture model(2021) Olesch, Darius; Kuhn, Charlotte; Schlüter, Alexander; Müller, RalfPhase field models for fracture are energy-based and employ a continuous field variable, the phase field, to indicate cracks. The width of the transition zone of this field variable between damaged and intact regions is controlled by a regularization parameter. Narrow transition zones are required for a good approximation of the fracture energy which involves steep gradients of the phase field. This demands a high mesh density in finite element simulations if 4-node elements with standard bilinear shape functions are used. In order to improve the quality of the results with coarser meshes, exponential shape functions derived from the analytic solution of the 1D model are introduced for the discretization of the phase field variable. Compared to the bilinear shape functions these special shape functions allow for a better approximation of the fracture field. Unfortunately, lower-order Gauss-Legendre quadrature schemes, which are sufficiently accurate for the integration of bilinear shape functions, are not sufficient for an accurate integration of the exponential shape functions. Therefore in this work, the numerical accuracy of higher-order Gauss-Legendre formulas and a double exponential formula for numerical integration is analyzed.Item Open Access Adjustment of micro- and macroporosity of ß-TCP scaffolds using solid-stabilized foams as bone replacement(2023) Dufner, Lukas; Oßwald, Bettina; Eberspaecher, Jan; Riedel, Bianca; Kling, Chiara; Kern, Frank; Seidenstuecker, MichaelTo enable rapid osteointegration in bioceramic implants and to give them osteoinductive properties, scaffolds with defined micro- and macroporosity are required. Pores or pore networks promote the integration of cells into the implant, facilitating the supply of nutrients and the removal of metabolic products. In this paper, scaffolds are created from ß-tricalciumphosphate (ß-TCP) and in a novel way, where both the micro- and macroporosity are adjusted simultaneously by the addition of pore-forming polymer particles. The particles used are 10-40 wt%, spherical polymer particles of polymethylmethacrylate (PMMA) (Ø = 5 m) and alternatively polymethylsilsesquioxane (PMSQ) (Ø = 2 m), added in the course of ß-TCP slurry preparation. The arrangement of hydrophobic polymer particles at the interface of air bubbles was incorporated during slurry preparation and foaming of the slurry. The foam structures remain after sintering and lead to the formation of macro-porosity in the scaffolds. Furthermore, decomposition of the polymer particles during thermal debindering results in the formation of an additional network of interconnecting micropores in the stabilizing structures. It is possible to adjust the porosity easily and quickly in a range of 1.2-140 m with a relatively low organic fraction. The structures thus prepared showed no cytotoxicity nor negative effects on the biocompatibility.Item Open Access Adjustment of the geometries of the cutting front and the kerf by means of beam shaping to maximize the speed of laser cutting(2023) Lind, Jannik; Hagenlocher, Christian; Weckenmann, Niklas; Blazquez-Sanchez, David; Weber, Rudolf; Graf, ThomasThe shape of the laser beam used for fusion cutting significantly influences the geometry of both the cutting front and the cutting kerf. The angle of the cutting front in turn impacts the local absorptivity, while the width of the kerf defines the amount of material, which has to be molten. The kerf’s geometry therefore determines the maximum possible cutting speed at which a successful cut is feasible with a given available laser power. The absorptivity, the width of the kerf, and the maximum possible cutting speed can be estimated from a simple model considering the conservation of energy and rough geometrical approximations. In order to verify the prediction of the model, the geometry of the cutting front and kerf resulting from different processing conditions was observed by means of online high-speed X-ray diagnostics. The geometry of the interaction zone was recorded with a framerate of 1000 Hz during fusion cutting of 10-mm-thick samples of stainless steel. Comparing the results obtained with different shapes of the laser beam, it was found that the absorptivity is increased when the beam’s longitudinal cross-section (parallel to the feed) is enlarged. Reducing the width of the beam in the transversal direction normal to the feed reduces the cross-sectional area of the cutting kerf. The findings show a good agreement with the geometric model which enabled the prediction of the absorptivity and the cross-sectional area of the cutting kerf and hence allows to reliably estimate the maximum cutting speed for different shapes of the laser beam, laser power, and sheet thicknesses.Item Open Access Advantages of holographic imaging through fog(2023) Gröger, Alexander; Pedrini, Giancarlo; Claus, Daniel; Alekseenko, Igor; Gloeckler, Felix; Reichelt, StephanItem Open Access Alumina and zirconia-reinforced polyamide PA-12 composites for biomedical additive manufacturing(2021) Nakonieczny, Damian S.; Kern, Frank; Dufner, Lukas; Antonowicz, Magdalena; Matus, KrzysztofThis work aimed to prepare a composite with a polyamide (PA) matrix and surface-modified ZrO2 or Al2O3 to be used as ceramic fillers (CFs). Those composites contained 30 wt.% ceramic powder to 70 wt.% polymer. Possible applications for this type of composite include bioengineering applications especially in the fields of dental prosthetics and orthopaedics. The ceramic fillers were subjected to chemical surface modification with Piranha Solution and suspension in 10 M sodium hydroxide and Si3N4 to achieve the highest possible surface development and to introduce additional functional groups. This was to improve the bonding between the CFs and the polymer matrix. Both CFs were examined for particle size distribution (PSD), functional groups (FTIR), chemical composition (XPS), phase composition (XRD), and morphology and chemical composition (SEM/EDS). Filaments were created from the powders prepared in this way and were then used for 3D FDM printing. Samples were subjected to mechanical tests (tensility, hardness) and soaking tests in a high-pressure autoclave in artificial saliva for 14, 21, and 29 days.Item Open Access Analysis of the SPH interpolation moments matrix with regard to the influences of the discretization error in adaptive simulations(2021) Heinzelmann, Pascal; Spreng, Fabian; Sollich, Daniel; Eberhard, Peter; Williams, John R.Item Open Access Analytical model for the depth progress of percussion drilling with ultrashort laser pulses(2021) Holder, Daniel; Weber, Rudolf; Graf, Thomas; Onuseit, Volkher; Brinkmeier, David; Förster, Daniel J.; Feuer, AnneA simplified analytical model is presented that predicts the depth progress during and the final hole depth obtained by laser percussion drilling in metals with ultrashort laser pulses. The model is based on the assumption that drilled microholes exhibit a conical shape and that the absorbed fluence linearly increases with the depth of the hole. The depth progress is calculated recursively based on the depth changes induced by the successive pulses. The experimental validation confirms the model and its assumptions for percussion drilling in stainless steel with picosecond pulses and different pulse energies.Item Open Access Anisotropic hyperelastic strain energy function for carbon fiber woven fabrics(2024) Cai, Renye; Zhang, Heng; Lai, Chenxiang; Yu, Zexin; Zeng, Xiangkun; Wu, Min; Wang, Yankun; Huang, Qisen; Zhu, Yiwei; Kong, ChunyuThe present paper introduces an innovative strain energy function (SEF) for incompressible anisotropic fiber-reinforced materials. This SEF is specifically designed to understand the mechanical behavior of carbon fiber-woven fabric. The considered model combines polyconvex invariants forming an integrity basisin polynomial form, which is inspired by the application of Noether’s theorem. A single solution can be obtained during the identification because of the relationship between the SEF we have constructed and the material parameters, which are linearly dependent. The six material parameters were precisely determined through a comparison between the closed-form solutions from our model and the corresponding tensile experimental data with different stretching ratios, with determination coefficients consistently reaching a remarkable value of 0.99. When considering only uniaxial tensile tests, our model can be simplified from a quadratic polynomial to a linear polynomial, thereby reducing the number of material parameters required from six to four, while the fidelity of the model’s predictive accuracy remains unaltered. The comparison between the results of numerical calculations and experiments proves the efficiency and accuracy of the method.Item Open Access Application of data-driven surrogate models for active human model response prediction and restraint system optimization(2023) Hay, Julian; Schories, Lars; Bayerschen, Eric; Wimmer, Peter; Zehbe, Oliver; Kirschbichler, Stefan; Fehr, JörgSurrogate models are a must-have in a scenario-based safety simulation framework to design optimally integrated safety systems for new mobility solutions. The objective of this study is the development of surrogate models for active human model responses under consideration of multiple sampling strategies. A Gaussian process regression is chosen for predicting injury values based on the collision scenario, the occupant's seating position after a pre-crash movement and selected restraint system parameters. The trained models are validated and assessed for each sampling method and the best-performing surrogate model is selected for restraint system parameter optimization.Item Open Access Are you sure? : prediction revision in automated decision‐making(2020) Burkart, Nadia; Robert, Sebastian; Huber, Marco F.With the rapid improvements in machine learning and deep learning, decisions made by automated decision support systems (DSS) will increase. Besides the accuracy of predictions, their explainability becomes more important. The algorithms can construct complex mathematical prediction models. This causes insecurity to the predictions. The insecurity rises the need for equipping the algorithms with explanations. To examine how users trust automated DSS, an experiment was conducted. Our research aim is to examine how participants supported by an DSS revise their initial prediction by four varying approaches (treatments) in a between‐subject design study. The four treatments differ in the degree of explainability to understand the predictions of the system. First we used an interpretable regression model, second a Random Forest (considered to be a black box [BB]), third the BB with a local explanation and last the BB with a global explanation. We noticed that all participants improved their predictions after receiving an advice whether it was a complete BB or an BB with an explanation. The major finding was that interpretable models were not incorporated more in the decision process than BB models or BB models with explanations.Item Open Access Artificial intelligence techniques for improving cylindrical shrink-fit shaft-hub couplings(2023) Saeed, Muhammad Shahrukh; Falter, Jan; Dausch, Valesko; Wagner, Markus; Kreimeyer, Matthias; Eisenbart, BorisItem Open Access Assessment of the heat transfer conditions in the cavity of a rotating circular saw(2024) Stegmann, Jan; Baumert, Moritz; Kabelac, Stephan; Menze, Christian; Ramme, Johannes; Möhring, Hans-ChristianTo improve machining processes concerning the usage of lubricants, knowledge of the thermo-mechanical and thermo-fluid interactions at the cutting zone is of great importance. This study focuses on the description of the convective heat transfer which occurs during circular sawing when the lubricant is provided via an internal coolant supply. The highly complex flow field inside the cavity of the sawing process is separated into two distinct flow forms, an impingement and a channel flow. With the aid of experimental and numerical studies, the heat transfer characteristics of these two flow forms have been examined for water and a lubricant used in the circular sawing process. Studies have been conducted over a wide range of Reynolds numbers (impingement flow: 2×103Item Open Access Automated and virtual optimization of race-track simulation parameters on the power-train test bench(2023) Schilling, Jannes; Wilmsen, Jan-Michael; Reuss, Hans-Christian; Schmidt, Henrik; Prokop, GüntherThis paper focuses on powertrain test benches (PTB) in motorsports applications. In this case, a real powertrain is coupled with a virtual environment on the PTB to emulate mechanical loads experienced during racetrack driving. We utilize a Digital Twin of the PTB (a combination of the PTBs’ virtual environment, a powertrain model and a testbed model) to reduce setup time and allow offline virtual environment parameterization. The simulation models of the virtual environment may not always provide accurate representations due to unknown parameters or simplifications made to meet real-time requirements. Consequently, there are discrepancies between PTB and vehicle measurements. This paper aims to minimize such differences with a novel parame-ter optimization method.Item Open Access Bifurcations of hidden orbits in discontinuous maps(2021) Avrutin, Viktor; Jeffrey, Mike R.One-dimensional maps with discontinuities are known to exhibit bifurcations somewhat different to those of continuous maps. Freed from the constraints of continuity, and hence from the balance of stability that is maintained through fold, flip, and other standard bifurcations, the attractors of discontinuous maps can appear as if from nowhere, and change period or stability almost arbitrarily. But in fact this is misleading, and if one includes states inside the discontinuity in the map, highly unstable ‘hidden orbits’ are created that have iterates on the discontinuity. These populate the bifurcation diagrams of discontinuous maps with just the necessary unstable branches to make them resemble those of continuous maps, namely fold, flip, and other familiar bifurcations. Here we analyse such bifurcations in detail, focussing first on folds and flips, then on bifurcations characterised by creating infinities of orbits, chaotic repellers, and infinite accumulations of sub-bifurcations. We show the role that hidden orbits play, and how they capture the topological structures of continuous maps with steep branches. This suggests both that a more universal dynamical systems theory marrying continuous and discontinuous systems is possible, and shows how discontinuities can be used to approximate steep jumps in continuous systems without losing any of their topological structure.Item Open Access Biomechanical analysis of stoop and free-style squat lifting and lowering with a generic back-support exoskeleton model(2022) Tröster, Mark; Budde, Sarah; Maufroy, Christophe; Andersen, Michael Skipper; Rasmussen, John; Schneider, Urs; Bauernhansl, ThomasMusculoskeletal disorders (MSDs) induced by industrial manual handling tasks are a major issue for workers and companies. As flexible ergonomic solutions, occupational exoskeletons can decrease critically high body stress in situations of awkward postures and motions. Biomechanical models with detailed anthropometrics and motions help us to acquire a comprehension of person- and application-specifics by considering the intended and unintended effects, which is crucial for effective implementation. In the present model-based analysis, a generic back-support exoskeleton model was introduced and applied to the motion data of one male subject performing symmetric and asymmetric dynamic manual handling tasks. Different support modes were implemented with this model, including support profiles typical of passive and active systems and an unconstrained optimal support mode used for reference to compare and quantify their biomechanical effects. The conducted simulations indicate that there is a high potential to decrease the peak compression forces in L4/L5 during the investigated heavy loaded tasks for all motion sequences and exoskeleton support modes (mean reduction of 13.3% without the optimal support mode). In particular, asymmetric motions (mean reduction of 14.7%) can be relieved more than symmetric ones (mean reduction of 11.9%) by the exoskeleton support modes without the optimal assistance. The analysis of metabolic energy consumption indicates a high dependency on lifting techniques for the effectiveness of the exoskeleton support. While the exoskeleton support substantially reduces the metabolic cost for the free-squat motions, a slightly higher energy consumption was found for the symmetric stoop motion technique with the active and optimal support mode.Item Open Access Biomimetics design of sandwich-structured composites(2023) Kunzmann, Carsten; Aliakbarpour, Hamaseh; Ramezani, MaziarIn the context of energy efficiency and resource scarcity, lightweight construction has gained significant importance. Composite materials, particularly sandwich structures, have emerged as a key area within this field, finding numerous applications in various industries. The exceptional strength-to-weight ratio and the stiffness-to-weight ratio of sandwich structures allow the reduction in mass in components and structures without compromising strength. Among the widely used core designs, the honeycomb pattern, inspired by bee nests, has been extensively employed in the aviation and aerospace industry due to its lightweight and high resistance. The hexagonal cells of the honeycomb structure provide a dense arrangement, enhancing stiffness while reducing weight. However, nature offers a multitude of other structures that have evolved over time and hold great potential for lightweight construction. This paper focuses on the development, modeling, simulation, and testing of lightweight sandwich composites inspired by biological models, following the principles of biomimetics. Initially, natural and resilient design templates are researched and abstracted to create finished core structures. Numerical analysis is then employed to evaluate the structural and mechanical performance of these structures. The most promising designs are subsequently fabricated using 3D printing technology and subjected to three-point bending tests. Carbon-fiber-reinforced nylon filament was used for printing the face sheets, while polylactic acid (PLA+) was used as the core material. A honeycomb-core composite is also simulated and tested for comparative purposes, as it represents an established design in the market. Key properties such as stiffness, load-bearing capacity, and flexibility are assessed to determine the potential of the new core geometries. Several designs demonstrated improved characteristics compared to the honeycomb design, with the developed structures exhibiting a 38% increase in stiffness and an 18% enhancement in maximum load-bearing capacity.Item Open Access Cenospheres-reinforced PA-12 composite : preparation, physicochemical properties, and soaking tests(2022) Nakonieczny, Damian S.; Antonowicz, Magdalena; Heim, Thomas; Swinarew, Andrzej S.; Nuckowski, Paweł; Matus, Krzysztof; Lemanowicz, MarcinThe main aim of this research was the preparation of a polymer–ceramic composite with PA-12 as the polymer matrix and modified aluminosilicate cenospheres (CSs) as the ceramic filler. The CSs were subjected to an early purification and cleaning process, which was also taken as a second objective. The CSs were surface modified by a two-step process: (1) etching in Piranha solution and (2) silanization in 3-aminopropyltriethoxysilane. The composite was made for 3D printing by FDM. Raw and modified CSs and a composite with PA-12 were subjected to the following tests: surface development including pores (BET), real density (HP), chemical composition and morphology (SEM/EDS, FTIR), grain analysis (PSD), phase composition (XRD), hardness (HV), and static tensile tests. The composites were subjected to soaking under simulated body fluid (SBF) conditions in artificial saliva for 14, 21, and 29 days. Compared to pure PA-12, PA-12_CS had generally better mechanical properties and was more resistant to SBF at elevated temperatures and soaking times. These results showed this material has potential for use in biomedical applications. These results also showed the necessity of developing a kinetic aging model for aging in different liquids to verify the true value of this material.Item Open Access Challenges of using augmented reality to support an efficient and error-free assembly in complex variant environments(2023) Dausch, Valesko; Roth, Daniel; Kreimeyer, Matthias; Bohr, SebastianItem Open Access Characterisation of an energy absorbing foam for motorcycle rider protection in LS-DYNA(2021) Maier, Steffen; Helbig, Martin; Hertneck, Holger; Fehr, Jörg