07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/8

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    On the divergence theorem for submanifolds of Euclidean vector spaces within the theory of second-gradient continua
    (2022) Capobianco, Giuseppe; Eugster, Simon R.
    In the theory of second-gradient continua, the internal virtual work functional can be considered as a second-order distribution in which the virtual displacements take the role of test functions. In its easiest representation, the internal virtual work functional is represented as a volume integral over a subset of the three-dimensional Euclidean vector space and involves first and second derivatives of the virtual displacements. In this paper, we show by an iterative integration by parts procedure how an alternative representation of such a functional can be obtained when the integration domain is a subset that contains also edges and wedges. Since this procedure strongly relies on the divergence theorem for submanifolds of a Euclidean vector space, it is a main goal to derive this divergence theorem for submanifolds starting from Stokes’ theorem for manifolds. To that end, results from Riemannian geometry are gathered and applied to the submanifold case.
  • Thumbnail Image
    ItemOpen Access
    Stability of rigid body motion through an extended intermediate axis theorem : application to rockfall simulation
    (2021) Leine, Remco I.; Capobianco, Giuseppe; Bartelt, Perry; Christen, Marc; Caviezel, Andrin
    The stability properties of a freely rotating rigid body are governed by the intermediate axis theorem, i.e., rotation around the major and minor principal axes is stable whereas rotation around the intermediate axis is unstable. The stability of the principal axes is of importance for the prediction of rockfall. Current numerical schemes for 3D rockfall simulation, however, are not able to correctly represent these stability properties. In this paper an extended intermediate axis theorem is presented, which not only involves the angular momentum equations but also the orientation of the body, and we prove the theorem using Lyapunov’s direct method. Based on the stability proof, we present a novel scheme which respects the stability properties of a freely rotating body and which can be incorporated in numerical schemes for the simulation of rigid bodies with frictional unilateral constraints. In particular, we show how this scheme is incorporated in an existing 3D rockfall simulation code. Simulations results reveal that the stability properties of rotating rocks play an essential role in the run-out length and lateral spreading of rocks.