07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/8

Browse

Search Results

Now showing 1 - 10 of 11
  • Thumbnail Image
    ItemOpen Access
    Estimation of the depth limit for percussion drilling with picosecond laser pulses
    (2018) Förster, Daniel J.; Weber, Rudolf; Holder, Daniel; Graf, Thomas
  • Thumbnail Image
    ItemOpen Access
    Process limits for percussion drilling of stainless steel with ultrashort laser pulses at high average powers
    (2022) Brinkmeier, David; Holder, Daniel; Loescher, André; Röcker, Christoph; Förster, Daniel J.; Onuseit, Volkher; Weber, Rudolf; Abdou Ahmed, Marwan; Graf, Thomas
    The availability of commercial ultrafast lasers reaching into the kW power level offers promising potential for high-volume manufacturing applications. Exploiting the available average power is challenging due to process limits imposed by particle shielding, ambient atmosphere breakdown, and heat accumulation effects. We experimentally confirm the validity of a simple thermal model, which can be used for the estimation of a critical heat accumulation threshold for percussion drilling of AISI 304 steel. The limits are summarized in a processing map, which provides selection criteria for process parameters and suitable lasers. The results emphasize the need for process parallelization.
  • Thumbnail Image
    ItemOpen Access
    Tuning the hardness of produced parts by adjusting the cooling rate during laser-based powder bed fusion of AlSi10Mg by adapting the process parameters
    (2022) Leis, Artur; Traunecker, David; Weber, Rudolf; Graf, Thomas
    The mechanical properties of parts produced by laser-based powder bed fusion (LPBF) are mainly determined by the grain structure in the material, which is governed by the cooling rate during solidification. This cooling rate strongly depends on the scan velocity and the absorbed laser power. Experiments with varying process parameters were performed to develop and validate an analytical model that predicts the hardness of printed AlSi10Mg parts. It was found that it is possible to tune the hardness of additively manufactured parts of AlSi10Mg in a range between 60 ± 9 HV0.5 and 100 ± 10 HV0.5 by adjusting the cooling rate during solidification with adapted process parameters.
  • Thumbnail Image
    ItemOpen Access
  • Thumbnail Image
    ItemOpen Access
    Analytical model for the depth progress of percussion drilling with ultrashort laser pulses
    (2021) Holder, Daniel; Weber, Rudolf; Graf, Thomas; Onuseit, Volkher; Brinkmeier, David; Förster, Daniel J.; Feuer, Anne
    A simplified analytical model is presented that predicts the depth progress during and the final hole depth obtained by laser percussion drilling in metals with ultrashort laser pulses. The model is based on the assumption that drilled microholes exhibit a conical shape and that the absorbed fluence linearly increases with the depth of the hole. The depth progress is calculated recursively based on the depth changes induced by the successive pulses. The experimental validation confirms the model and its assumptions for percussion drilling in stainless steel with picosecond pulses and different pulse energies.
  • Thumbnail Image
    ItemOpen Access
    Inversely 3D-printed β-TCP scaffolds for bone replacement
    (2019) Seidenstücker, Michael; Lange, Svenja; Esslinger, Steffen; Latorre, Sergio H.; Krastev, Rumen; Gadow, Rainer; Mayr, Hermann O.; Bernstein, Anke
  • Thumbnail Image
    ItemOpen Access
    Feasibility assessment of parallelized helical drilling
    (2023) Brinkmeier, David; Onuseit, Volkher; Graf, Thomas
  • Thumbnail Image
    ItemOpen Access
    The effect of rod orientation on electrical anisotropy in silver nanowire networks for ultra-transparent electrodes
    (2016) Ackermann, Thomas; Neuhaus, Raphael; Roth, Siegmar
    Two-dimensional networks made of metal nanowires are excellent paradigms for the experimental observation of electrical percolation caused by continuous jackstraw-like physical pathways. Such systems became very interesting as alternative material in transparent electrodes, which are fundamental components in display devices. This work presents the experimental characterization of low-haze and ultra-transparent electrodes based on silver nanowires. The films are created by dip-coating, a feasible and scalable liquid film coating technique. We have found dominant alignment of the silver nanowires in withdrawal direction. The impact of this structural anisotropy on electrical anisotropy becomes more pronounced for low area coverage. The rod alignment does not influence the technical usability of the films as significant electrical anisotropy occurs only at optical transmission higher than 99 %. For films with lower transmission, electrical anisotropy becomes negligible. In addition to the experimental work, we have carried out computational studies in order to explain our findings further and compare them to our experiments and previous literature. This paper presents the first experimental observation of electrical anisotropy in two-dimensional silver nanowire networks close at the percolation threshold.
  • Thumbnail Image
    ItemOpen Access
    Local vaporization at the cut front at high laser cutting speeds
    (2020) Bocksrocker, Oliver; Berger, Peter; Kessler, Steffen; Hesse, Tim; Rominger, Volker; Graf, Thomas
    High-speed videos of the cut front and spectrometric measurements were applied to detect local vaporization on the cut front at high cutting speeds to show that with increasing feed rate, temporally short and intense flashes are generated by vaporization phenomena on the upper part of the cut front. The latter are accompanied by the emergence of an interrupted striation pattern on the surface of the cutting edge. The findings support the assumption that local vaporization at the cut front might be the cause for reduced quality of the cutting process at elevated cutting speeds. The observation of vaporization serves as a diagnostic method to anticipate a fail cut and the interrupted striation pattern.
  • Thumbnail Image
    ItemOpen Access
    Augmented reality to visualize a finite element analysis for assessing clamping concepts
    (2024) Maier, Walther; Möhring, Hans-Christian; Feng, Qi; Wunderle, Richard
    This paper presents the development of an innovative augmented reality application for evaluating clamping concepts through visualizing the finite element analysis. The focus is on transforming the traditional simulation results into immersive, holographic displays, enabling users to experience and assess finite element analysis in three dimensions. The application development process involves data processing by MATLAB, visualization in the software Unity, and displaying holograms through Microsoft’s Hololens2. The most significant advancement introduces a new algorithm for rendering different finite elements in Unity. The application targets not only university engineering students but also vocational students with limited background in finite element analysis and machining, aiming to make the learning process more interactive and engaging. It was tested in a real machining environment, demonstrating its technical feasibility and potential in engineering education.