07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/8
Browse
3 results
Search Results
Item Open Access Port-Hamiltonian fluid-structure interaction modelling and structure-preserving model order reduction of a classical guitar(2023) Rettberg, Johannes; Wittwar, Dominik; Buchfink, Patrick; Brauchler, Alexander; Ziegler, Pascal; Fehr, Jörg; Haasdonk, BernardItem Open Access Efficient parametric analysis of the chemical master equation through model order reduction(2012) Waldherr, Steffen; Haasdonk, BernardBACKGROUND: Stochastic biochemical reaction networks are commonly modelled by the chemical master equation, and can be simulated as first order linear differential equations through a finite state projection. Due to the very high state space dimension of these equations, numerical simulations are computationally expensive. This is a particular problem for analysis tasks requiring repeated simulations for different parameter values. Such tasks are computationally expensive to the point of infeasibility with the chemical master equation.RESULTS:In this article, we apply parametric model order reduction techniques in order to construct accurate low-dimensional parametric models of the chemical master equation. These surrogate models can be used in various parametric analysis task such as identifiability analysis, parameter estimation, or sensitivity analysis. As biological examples, we consider two models for gene regulation networks, a bistable switch and a network displaying stochastic oscillations. CONCLUSIONS: The results show that the parametric model reduction yields efficient models of stochastic biochemical reaction networks, and that these models can be useful for systems biology applications involving parametric analysis problems such as parameter exploration, optimization, estimation or sensitivity analysis.Item Open Access Improved a posteriori error bounds for reduced port-Hamiltonian systems(2024) Rettberg, Johannes; Wittwar, Dominik; Buchfink, Patrick; Herkert, Robin; Fehr, Jörg; Haasdonk, BernardProjection-based model order reduction of dynamical systems usually introduces an error between the high-fidelity model and its counterpart of lower dimension. This unknown error can be bounded by residual-based methods, which are typically known to be highly pessimistic in the sense of largely overestimating the true error. This work applies two improved error bounding techniques, namely (a) a hierarchical error bound and (b) an error bound based on an auxiliary linear problem , to the case of port-Hamiltonian systems. The approaches rely on a secondary approximation of (a) the dynamical system and (b) the error system. In this paper, these methods are adapted to port-Hamiltonian systems. The mathematical relationship between the two methods is discussed both theoretically and numerically. The effectiveness of the described methods is demonstrated using a challenging three-dimensional port-Hamiltonian model of a classical guitar with fluid–structure interaction.