07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/8

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    Enzyme-assisted circular additive manufacturing as an enabling technology for a circular bioeconomy : a conceptual review
    (2024) Protte-Freitag, Kristin; Gotzig, Sophia; Rothe, Hannah; Schwarz, Oliver; Silber, Nadine; Miehe, Robert
    Additive manufacturing (AM) is a decisive element in the sustainable transformation of technologies. And yet its inherent potential has not been fully utilized. In particular, the use of biological materials represents a comparatively new dimension that is still in the early stages of deployment. In order to be considered sustainable and contribute to the circular economy, various challenges need to be overcome. Here, the literature focusing on sustainable, circular approaches is reviewed. It appears that existing processes are not yet capable of being used as circular economy technologies as they are neither able to process residual and waste materials, nor are the produced products easily biodegradable. Enzymatic approaches, however, appear promising. Based on this, a novel concept called enzyme-assisted circular additive manufacturing was developed. Various process combinations using enzymes along the process chain, starting with the preparation of side streams, through the functionalization of biopolymers to the actual printing process and post-processing, are outlined. Future aspects are discussed, stressing the necessity for AM processes to minimize or avoid the use of chemicals such as solvents or binding agents, the need to save energy through lower process temperatures and thereby reduce CO2 consumption, and the necessity for complete biodegradability of the materials used.
  • Thumbnail Image
    ItemOpen Access
    The effect of rod orientation on electrical anisotropy in silver nanowire networks for ultra-transparent electrodes
    (2016) Ackermann, Thomas; Neuhaus, Raphael; Roth, Siegmar
    Two-dimensional networks made of metal nanowires are excellent paradigms for the experimental observation of electrical percolation caused by continuous jackstraw-like physical pathways. Such systems became very interesting as alternative material in transparent electrodes, which are fundamental components in display devices. This work presents the experimental characterization of low-haze and ultra-transparent electrodes based on silver nanowires. The films are created by dip-coating, a feasible and scalable liquid film coating technique. We have found dominant alignment of the silver nanowires in withdrawal direction. The impact of this structural anisotropy on electrical anisotropy becomes more pronounced for low area coverage. The rod alignment does not influence the technical usability of the films as significant electrical anisotropy occurs only at optical transmission higher than 99 %. For films with lower transmission, electrical anisotropy becomes negligible. In addition to the experimental work, we have carried out computational studies in order to explain our findings further and compare them to our experiments and previous literature. This paper presents the first experimental observation of electrical anisotropy in two-dimensional silver nanowire networks close at the percolation threshold.