07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/8
Browse
3 results
Search Results
Item Open Access The effect of rod orientation on electrical anisotropy in silver nanowire networks for ultra-transparent electrodes(2016) Ackermann, Thomas; Neuhaus, Raphael; Roth, SiegmarTwo-dimensional networks made of metal nanowires are excellent paradigms for the experimental observation of electrical percolation caused by continuous jackstraw-like physical pathways. Such systems became very interesting as alternative material in transparent electrodes, which are fundamental components in display devices. This work presents the experimental characterization of low-haze and ultra-transparent electrodes based on silver nanowires. The films are created by dip-coating, a feasible and scalable liquid film coating technique. We have found dominant alignment of the silver nanowires in withdrawal direction. The impact of this structural anisotropy on electrical anisotropy becomes more pronounced for low area coverage. The rod alignment does not influence the technical usability of the films as significant electrical anisotropy occurs only at optical transmission higher than 99 %. For films with lower transmission, electrical anisotropy becomes negligible. In addition to the experimental work, we have carried out computational studies in order to explain our findings further and compare them to our experiments and previous literature. This paper presents the first experimental observation of electrical anisotropy in two-dimensional silver nanowire networks close at the percolation threshold.Item Open Access Ressourceneffiziente Erzeugung ultra-transparenter Elektroden durch perkolierende Nanostrukturen(2016) Ackermann, Thomas; Westkämper, Engelbert (Prof. a. D. Dr.-Ing. Prof. E. h. Dr.-Ing. E. h. Dr. h. c. mult.)Transparente leitfähige Schichten (transparente Elektroden) sind elementare Bauteile in Touch-Modulen, Displays und Solarzellen. Die vorliegende Arbeit beschäftigt sich mit der Erzeugung transparenter Elektroden auf Basis alternativer Materialien, um die Defizite - insbesondere die Brüchigkeit und die relativ hohen Herstellungskosten - des konventionellen Materials Indiumzinnoxid zu umgehen. Zweidimensionale Netzwerke aus stäbchenförmigen elektrischen Leitern werden ausgehend von einer Dispersion durch Nassfilmbeschichtung hergestellt und hinsichtlich ihrer Eignung als transparente Elektroden untersucht. Dabei handelt es sich Netzwerke aus Silbernanodrähten und um Hybrid-Schichten aus Silbernanodrähten und Kohlenstoffnanoröhren (Co-Perkolation). Neben der Ableitung und Umsetzung Produkt- und Prozess-orientierter Ziele liefert die Arbeit einen Beitrag zum Verständnis der zweidimensionalen elektrischen Perkolation in Netzwerken aus stäbchenförmigen elektrischen Leitern, insbesondere nahe an der Perkolationsschwelle, bei der die Netzwerke eine sehr hohe Transparenz aufweisen, weshalb derartige Schichten als ultra-transparent bezeichnet werden. Diese Arbeit entstand an der Graduate School of Excellence advanced Manufacturing Engineering (GSaME) der Universität Stuttgart in Kooperation mit dem Fraunhofer-Institut für Produktionstechnik und Automatisierung (IPA) in Stuttgart.Item Open Access Integrating ionic electroactive polymer actuators and sensors into adaptive building skins: potentials and limitations(2020) Neuhaus, Raphael; Zahiri, Nima; Petrs, Jan; Tahouni, Yasaman; Siegert, Jörg; Kolaric, Ivica; Dahy, Hanaa; Bauernhansl, ThomasBuilding envelopes separate the confined interior world engineered for human comfort and indoor activity from the exterior world with its uncontainable climatic forces and man-made immission. In the future, active, sustainable and lightweight building skins are needed to serve as an adaptive interface to govern the building-physical interactions between these two worlds. This article provides conceptual and experimental results regarding the integration of ionic electroactive polymer sensors and actuators into fabric membranes. The ultimate goal is to use this technology for adaptive membrane building skins. These devices have attracted high interest from industry and academia due to their small actuation voltages, relatively large actuation and sensing responses and their flexible and soft mechanical characteristics. However, their complex manufacturing process, sophisticated material compositions and their environmental sensitivity have limited the application range until now. The article describes the potentials and limitations of employing such devices for two different adaptive building functionalities: first, as a means of ventilation control and humidity regulation by embedding small actuated apertures into a fabric membrane, and second, as flexible, energy- and cost-efficient distributed sensors for external load monitoring of such structures. The article focusses on designing, building and testing of two experimental membrane demonstrators with integrated polymer actuators and sensors. It addresses the challenges encountered and draws conclusions for potential future optimization at the device and system level.